Chloropentaphenyldisiloxane—Model Study on Intermolecular Interactions in the Crystal Structure of a Monofunctionalized Disiloxane †
Abstract
:1. Introduction
2. Experimental Details
2.1. General Remarks
2.2. Synthesis of Ph2SiCl(OSiPh3) (2)
2.3. X-Ray Crystallography
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Liebau, F. Structural Chemistry of Silicates: Structure, Bonding, and Classification; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Swaddle, T.W.; Salerno, J.; Tregloan, P.A. Aqueous aluminates, silicates, and aluminosilicates. Chem. Soc. Rev. 1994, 23, 319–325. [Google Scholar] [CrossRef]
- Perry, C.C.; Keeling-Tucker, T. Biosilicification: The role of the organic matrix in structure control. J. Biol. Inorg. Chem. 2000, 5, 537–550. [Google Scholar] [CrossRef]
- Ganachaud, S.; Boileau, S.; Boury, B. Silicon Based Polymers: Advances in Synthesis and Supramolecular Organization; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Schubert, U.; Hüsing, N. Synthesis of Inorganic Materials, 4th ed.; Wiley-VCH: Weinheim, Germany, 2019. [Google Scholar]
- Höppe, H.A.; Stadler, F.; Oeckler, O.; Schnick, W. Ca[Si2O2N2]—A Novel Layer Silicate. Angew. Chem. Int. Ed. 2004, 43, 5540–5542. [Google Scholar] [CrossRef] [PubMed]
- Däschlein, C.; Bauer, J.O.; Strohmann, C. From the Selective Cleavage of the Si–O–Si Bond in Disiloxanes to Zwitterionic, Water-Stable Zinc Silanolates. Angew. Chem. Int. Ed. 2009, 48, 8074–8077. [Google Scholar] [CrossRef]
- Spirk, S.; Nieger, M.; Belaj, F.; Pietschnig, R. Formation and hydrogen bonding of a novel POSS-trisilanol. Dalton Trans. 2008, 163–167. [Google Scholar] [CrossRef]
- Hurkes, N.; Bruhn, C.; Belaj, F.; Pietschnig, R. Silanetriols as Powerful Starting Materials for Selective Condensation to Bulky POSS Cages. Organometallics 2014, 33, 7299–7306. [Google Scholar] [CrossRef]
- Čas, D.; Hurkes, N.; Spirk, S.; Belaj, F.; Bruhn, C.; Rechberger, G.N.; Pietschnig, R. Dimer formation upon deprotonation: Synthesis and structure of a m-terphenyl substituted (R,S)-dilithium disiloxanolate disilanol. Dalton Trans. 2015, 44, 12818–12823. [Google Scholar] [CrossRef] [Green Version]
- Oguri, N.; Egawa, Y.; Takeda, N.; Unno, M. Janus-Cube Octasilsesquioxane: Facile Synthesis and Structure Elucidation. Angew. Chem. Int. Ed. 2016, 55, 9336–9339. [Google Scholar] [CrossRef] [PubMed]
- Lokare, K.S.; Frank, N.; Braun-Cula, B.; Goikoetxea, I.; Sauer, J.; Limberg, C. Trapping Aluminum Hydroxide Clusters with Trisilanols during Speciation in Aluminum(III)–Water Systems: Reproducible, Large Scale Access to Molecular Aluminate Models. Angew. Chem. Int. Ed. 2016, 55, 12325–12329. [Google Scholar] [CrossRef]
- Bauer, J.O.; Strohmann, C. Synthesis and molecular structure of a zwitterionic ZnI2 silanolate. Inorg. Chim. Acta 2018, 469, 133–135. [Google Scholar] [CrossRef]
- Lokare, K.S.; Braun-Cula, B.; Limberg, C.; Jorewitz, M.; Kelly, J.T.; Asmis, K.R.; Leach, S.; Baldauf, C.; Goikoetxea, I.; Sauer, J. Structure and Reactivity of Al−O(H)−Al Moieties in Siloxide Frameworks: Solution and Gas-Phase Model Studies. Angew. Chem. Int. Ed. 2019, 58, 902–906. [Google Scholar] [CrossRef]
- Espinosa-Jalapa, N.A.; Bauer, J.O. Controlled Synthesis and Molecular Structures of Methoxy-, Amino-, and Chloro-Functionalized Disiloxane Building Blocks. Z. Anorg. Allg. Chem. 2020, 646, 828–834. [Google Scholar] [CrossRef] [Green Version]
- Weitkamp, R.F.; Neumann, B.; Stammler, H.; Hoge, B. Synthesis and Reactivity of the First Isolated Hydrogen-Bridged Silanol–Silanolate Anions. Angew. Chem. Int. Ed. 2020, 59, 5494–5499. [Google Scholar] [CrossRef] [PubMed]
- Weitkamp, R.F.; Neumann, B.; Stammler, H.-G.; Hoge, B. The Influence of Weakly Coordinating Cations on the O–H···O— Hydrogen Bond of Silanol–Silanolate Anions. Chem. Eur. J. 2021, 27, 915–920. [Google Scholar] [CrossRef] [PubMed]
- Tacke, R. Milestones in the Biochemistry of Silicon: From Basic Research to Biotechnological Applications. Angew. Chem. Int. Ed. 1999, 38, 3015–3018. [Google Scholar] [CrossRef]
- Voinescu, A.E.; Kellermeier, M.; Bartel, B.; Carnerup, A.M.; Larsson, A.-K.; Touraud, D.; Kunz, W.; Kienle, L.; Pfitzner, A.; Hyde, S.T. Inorganic Self-Organized Silica Aragonite Biomorphic Composites. Cryst. Growth Des. 2008, 8, 1515–1521. [Google Scholar] [CrossRef]
- Volkmer, D.; Tugulu, S.; Fricke, M.; Nielsen, T. Morphosynthesis of Star-Shaped Titania–Silica Shells. Angew. Chem. Int. Ed. 2003, 42, 58–61. [Google Scholar] [CrossRef] [Green Version]
- Desiraju, G.R. Supramolecular Synthons in Crystal Engineering—A New Organic Synthesis. Angew. Chem. Int. Ed. Engl. 1995, 34, 2311–2327. [Google Scholar] [CrossRef]
- Desiraju, G.R. Hydrogen Bridges in Crystal Engineering: Interactions without Borders. Acc. Chem. Res. 2002, 35, 565–573. [Google Scholar] [CrossRef]
- Thompson, D.B.; Brook, M.A. Rapid Assembly of Complex 3D Siloxane Architectures. J. Am. Chem. Soc. 2008, 130, 32–33. [Google Scholar] [CrossRef]
- Bauer, J.O. The crystal structure of the triclinic polymorph of hexameric (trimethylsilyl)methyllithium, C24H66Li6Si6. Z. Kristallogr. NCS 2020, 235, 353–356. [Google Scholar] [CrossRef]
- Bauer, J.O. The crystal structure of the first ether solvate of hexaphenyldistannane [(Ph3Sn)2 · 2 THF]. Main Group Met. Chem. 2020, 43, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Bauer, J.O. Crystal Structure and Hirshfeld Surface Analysis of Trimethoxy(1-naphthyl)silane—Intermolecular Interactions in a One-Component Single-Crystalline Trimethoxysilane. Z. Anorg. Allg. Chem. 2021, 647, 1053–1057. [Google Scholar] [CrossRef]
- Pietschnig, R.; Merz, K. Selective Formation of Functionalized Disiloxanes from Terphenylfluorosilanes. Organometallics 2004, 23, 1373–1377. [Google Scholar] [CrossRef]
- Wojnowski, W.; Becker, B.; Peters, K.; Peters, E.-M.; von Schnering, H.G. Beiträge zur Chemie der Silicium-Schwefel-Verbindungen. 53. Die Struktur des 1,3-Dimethyl-1,1,3,3-Tetraphenyldisilthians. Z. Anorg. Allg. Chem. 1988, 563, 48–52. [Google Scholar] [CrossRef]
- Coelho, A.C.; Amarante, T.R.; Klinowski, J.; Gonçalves, I.S.; Almeida Paz, F.A. 1-Hydroxy-1,1,3,3,3-pentaphenyldisiloxane, [Si2O(OH)(Ph)5], at 100 K. Acta Crystallogr. Sect. E 2008, 64, o237–o238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amarante, T.R.; Coelho, A.C.; Klinowski, J.; Gonçalves, I.S.; Almeida Paz, F.A. 1-Hydroxy-1,1,3,3,3-pentaphenyldisiloxane, [Si2O(OH)(Ph)5], at 150 K. Acta Crystallogr. Sect. E 2008, 64, o239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, J.O.; Strohmann, C. One-step conversion of methoxysilanes to aminosilanes: A convenient synthetic strategy to N,O-functionalised organosilanes. Chem. Commun. 2012, 48, 7212–7214. [Google Scholar] [CrossRef]
- Bauer, J.O.; Strohmann, C. Stereoselective Synthesis of Silicon-Stereogenic Aminomethoxysilanes: Easy Access to Highly Enantiomerically Enriched Siloxanes. Angew. Chem. Int. Ed. 2013, 53, 720–724. [Google Scholar] [CrossRef]
- Woińska, M.; Grabowsky, S.; Dominiak, P.M.; Woźniak, K.; Jayatilaka, D. Hydrogen atoms can be located accurately and precisely by x-ray crystallography. Sci. Adv. 2016, 2, e1600192. [Google Scholar] [CrossRef] [Green Version]
- Wakabayashi, R.; Sugiura, Y.; Shibue, T.; Kuroda, K. Practical Conversion of Chlorosilanes into Alkoxysilanes without Generating HCl. Angew. Chem. Int. Ed. 2011, 50, 10708–10711. [Google Scholar] [CrossRef]
- Deschner, T.; Liang, Y.; Anwander, R. Silylation Efficiency of Chorosilanes, Alkoxysilanes, and Monosilazanes on Periodic Mesoporous Silica. J. Phys. Chem. C 2010, 114, 22603–22609. [Google Scholar] [CrossRef]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Spackman, M.A.; McKinnon, J.J. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 2002, 4, 378–392. [Google Scholar] [CrossRef]
- Bauer, J.O.; Strohmann, C. tert-Butoxytriphenylsilane. Acta Crystallogr. Sect. E 2010, 66, o461–o462. [Google Scholar] [CrossRef]
- Bauer, J.O.; Strohmann, C. Hydrogen bonding principles in inclusion compounds of triphenylsilanol and pyrrolidine: Synthesis and structural features of [(Ph3SiOH)4·HN(CH2)4] and [Ph3SiOH·HN(CH2)4·CH3CO2H]. J. Organomet. Chem. 2015, 797, 52–56. [Google Scholar] [CrossRef]
- Lokare, K.S.; Wittwer, P.; Braun-Cula, B.; Frank, N.; Hoof, S.; Braun, T.; Limberg, C. Mimicking Base Interaction with Acidic Sites [Si–O(H)–Al] of Zeolites in Molecular Models. Z. Anorg. Allg. Chem. 2017, 643, 1581–1588. [Google Scholar] [CrossRef] [Green Version]
- Rigaku Oxford Diffraction. CrysAlisPro Software System; Rigaku Corporation: Oxford, UK, 2018. [Google Scholar]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXL-2018; Universität Göttingen: Göttingen, Germany, 2018. [Google Scholar]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer17; University of Western Australia: Perth, Australia, 2017. [Google Scholar]
- Muzafarov, A.M.; Rebrov, E.A. From the Discovery of Sodiumoxyorganoalkoxysilanes to the Organosilicon Dendrimers and Back. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 4935–4948. [Google Scholar] [CrossRef]
- Weinhold, F.; West, R. Hyperconjugative Interactions in Permethylated Siloxanes and Ethers: The Nature of the SiO Bond. J. Am. Chem. Soc. 2013, 135, 5762–5767. [Google Scholar] [CrossRef]
- Fugel, M.; Hesse, M.F.; Pal, R.; Beckmann, J.; Jayatilaka, D.; Turner, M.J.; Karton, A.; Bultinck, P.; Chandler, G.S.; Grabowsky, S. Covalency and Ionicity Do Not Oppose Each Other—Relationship Between Si–O Bond Character and Basicity of Siloxanes. Chem. Eur. J. 2018, 24, 15275–15286. [Google Scholar] [CrossRef] [PubMed]
- Liew, S.K.; Al-Rafia, S.M.I.; Goettel, J.T.; Lummis, P.A.; McDonald, S.M.; Miedema, L.J.; Ferguson, M.J.; McDonald, R.; Rivard, E. Expanding the Steric Coverage Offered by Bis(amidosilyl) Chelates: Isolation of Low-Coordinate N-Heterocyclic Germylene Complexes. Inorg. Chem. 2012, 51, 5471–5480. [Google Scholar] [CrossRef] [PubMed]
- Reuter, K.; Maas, R.G.M.; Reuter, A.; Kilgenstein, F.; Asfaha, Y.; von Hänisch, C. Synthesis of heteroatomic bridged paracyclophanes. Dalton Trans. 2017, 46, 4530–4541. [Google Scholar] [CrossRef]
- Marin-Luna, M.; Pölloth, B.; Zott, F.; Zipse, H. Size-dependent rate acceleration in the silylation of secondary alcohols: The bigger the faster. Chem. Sci. 2018, 9, 6509–6515. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, G.V.; Downs, R.T.; Cox, D.F.; Ross, N.L.; Prewitt, C.T.; Rosso, K.M.; Lippmann, T.; Kirfel, A. Bonded interactions and the crystal chemistry of minerals: A review. Z. Kristallogr. 2008, 223, 1–40. [Google Scholar] [CrossRef]
- Brendler, E.; Heine, T.; Seichter, W.; Wagler, J.; Witter, R. 29Si NMR Shielding Tensors in Triphenylsilanes—29Si Solid State NMR Experiments and DFT-IGLO Calculations. Z. Anorg. Allg. Chem. 2012, 638, 935–944. [Google Scholar] [CrossRef]
- Arunan, E.; Desiraju, G.R.; Klein, R.A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D.C.; Crabtree, R.H.; Dannenberg, J.J.; Hobza, P.; et al. Defining the hydrogen bond: An account (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 1619–1636. [Google Scholar] [CrossRef]
- Arunan, E.; Desiraju, G.R.; Klein, R.A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D.C.; Crabtree, R.H.; Dannenberg, J.J.; Hobza, P.; et al. Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure Appl. Chem. 2011, 83, 1637–1641. [Google Scholar] [CrossRef]
- Steiner, T. The Hydrogen Bond in the Solid State. Angew. Chem. Int. Ed. 2002, 41, 48–76. [Google Scholar] [CrossRef]
- Steiner, T.; Starikov, E.B.; Amado, A.M.; Teixeira-Dias, J.J.C. Weak hydrogen bonding. Part 2. The hydrogen bonding nature of short C–H⋯π contacts: Crystallographic, spectroscopic and quantum mechanical studies of some terminal alkynes. J. Chem. Soc. Perkin Trans. 2 1995, 1321–1326. [Google Scholar] [CrossRef]
- Nishio, M.; Umezawa, Y.; Hirota, M.; Takeuchi, Y. The CH/π Interaction: Significance in Molecular Recognition. Tetrahedron 1995, 51, 8665–8701. [Google Scholar] [CrossRef]
- Taylor, R.; Kennard, O. Crystallographic Evidence for the Existence of C–H···O, C–H···N, and C–H···Cl Hydrogen Bonds. J. Am. Chem. Soc. 1982, 104, 5063–5070. [Google Scholar] [CrossRef]
- Desiraju, G.R.; Parthasarathy, R. The Nature of Halogen···Halogen Interactions: Are Short Halogen Contacts Due to Specific Attractive Forces or Due to Close Packing of Nonspherical Atoms? J. Am. Chem. Soc. 1989, 111, 8725–8726. [Google Scholar] [CrossRef]
- Aakeröy, C.B.; Evans, T.A.; Seddon, K.R.; Pálinkó, I. The C–H···Cl hydrogen bond: Does it exist? New J. Chem. 1999, 23, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Yin, C.; Chen, P.; Zhang, M.; Parkin, S.; Zhou, P.; Li, T.; Yu, F.; Long, S. sp2CH⋯Cl hydrogen bond in the conformational polymorphism of 4-chloro-phenylanthranilic acid. CrystEngComm 2017, 19, 4345–4354. [Google Scholar] [CrossRef]
- Bondi, A. van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441–451. [Google Scholar] [CrossRef]
Empirical formula | C30H25ClOSi2 |
Formula weight [g·mol−1] | 493.13 |
Crystal system | Monoclinic |
Space group | P21/n |
a [Å] | 10.6741(2) |
b [Å] | 14.2858(2) |
c [Å] | 17.5012(3) |
α [°] | 90 |
β [°] | 99.597(2) |
γ [°] | 90 |
Volume [Å3] | 2631.37(8) |
Z | 4 |
Density (calculated) ρ [g·cm−3] | 1.245 |
Absorption coefficient μ [mm−1] | 1.690 |
F(000) | 1032 |
Crystal size [mm3] | 0.161 × 0.100 × 0.084 |
Theta range for data collection θ [°] | 3.627–69.661 |
Index ranges | −12 ≤ h ≤ 14 |
−18 ≤ k ≤ 19 | |
−22 ≤ l ≤ 23 | |
Reflections collected | 22059 |
Independent reflections | 6570 (Rint = 0.0209) |
Completeness to θ = 56.650° | 99.9% |
Max. and min. transmission | 1.000 and 0.795 |
Data/restraints/parameters | 6570/0/407 |
Goodness-of-fit on F2 | 1.045 |
Final R indices [I > 2σ(I)] | R1 = 0.0347, wR2 = 0.0954 |
R indices (all data) | R1 = 0.0397, wR2 = 0.0994 |
Largest diff. peak and hole [e·Å−3] | 0.393 and −0.548 |
Contact | Distance (Å) |
---|---|
H21···C13 | 2.997 |
H21···C14 | 3.083 |
H21···C15 | 3.093 |
H21···C16 | 3.001 |
H21···C17 | 2.908 |
H21···C18 | 2.901 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bauer, J.O.; Götz, T. Chloropentaphenyldisiloxane—Model Study on Intermolecular Interactions in the Crystal Structure of a Monofunctionalized Disiloxane. Chemistry 2021, 3, 444-453. https://doi.org/10.3390/chemistry3020033
Bauer JO, Götz T. Chloropentaphenyldisiloxane—Model Study on Intermolecular Interactions in the Crystal Structure of a Monofunctionalized Disiloxane. Chemistry. 2021; 3(2):444-453. https://doi.org/10.3390/chemistry3020033
Chicago/Turabian StyleBauer, Jonathan O., and Tobias Götz. 2021. "Chloropentaphenyldisiloxane—Model Study on Intermolecular Interactions in the Crystal Structure of a Monofunctionalized Disiloxane" Chemistry 3, no. 2: 444-453. https://doi.org/10.3390/chemistry3020033
APA StyleBauer, J. O., & Götz, T. (2021). Chloropentaphenyldisiloxane—Model Study on Intermolecular Interactions in the Crystal Structure of a Monofunctionalized Disiloxane. Chemistry, 3(2), 444-453. https://doi.org/10.3390/chemistry3020033