Study on Adsorption Performance of Benzoic Acid in Cyclocarya paliurus Extract by Ethyl Cellulose Microspheres
Abstract
:1. Introduction
2. Materials and Methods
2.1. Main Experimental Materials and Instruments
2.2. Pretreatment of ECM
2.3. Structural Characterization of the ECM
2.3.1. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
2.3.2. Thermo Gravimetric Analyzer (TGA) Analysis
2.3.3. Scanning Electron Microscope (SEM) Analysis
2.3.4. X-ray Diffraction (XRD) Analysis
2.4. Determination of the Benzoic Acid
2.5. Preparation of Test Solution
2.5.1. Preparation of Standard Reference Solution
2.5.2. Preparation of Test Solution
2.5.3. Determination of Sample Determination Time
2.5.4. Investigation of Linear Relationship
2.6. Adsorption Experiment of ECM on Benzoic Acid in C. paliurus Extract
2.6.1. Static Adsorption Experiments
2.6.2. Adsorption Kinetic
2.7. Desorption Performance Test after Adsorption Equilibrium of ECM
2.7.1. The Influence of Methanol Concentration on the Desorption Performance of Benzoic Acid
2.7.2. Desorption Curves Test
3. Results and Discussion
3.1. Characterization of ECM
3.1.1. FTIR Analysis
3.1.2. TGA Analysis
3.1.3. SEM Analysis
3.1.4. XRD Analysis
3.2. Adsorption Behaviour
3.2.1. Static Adsorption Experiments
3.2.2. Adsorption Kinetics
3.3. Desorption Performance Test
3.3.1. The Influence of Methanol Concentration on the Desorption Performance of Benzoic Acid
3.3.2. Desorption Curves of ECM
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Espinosa, E.; Rol, F.; Bras, J.; Rodríguez, A. Production of lignocellulose nanofibers from wheat straw by different fibrillation methods. Comparison of its viability in cardboard recycling process. J. Clean. Prod. 2019, 239, 118083. [Google Scholar] [CrossRef]
- Tang, J.; Deng, J.Y. Preparation and Absorption Properties of Cellulose Modified by Graphene Oxide. J. Luzhou Univ. 2015, 17, 57–61. [Google Scholar]
- Michael, M.C.; Britta, S.; Anke, F.; Sakae, O.; Mark, T.; Shawn, K.; James, W.M. Physicochemical properties and mechanism of drug release from ethyl cellulose matrix tablets prepared by direct compression and hot-melt extrusion. Int. J. Pharm. 2004, 269, 509–522. [Google Scholar]
- Cai, W.; Yang, H.; Han, D.; Guo, X. A physical route to porous ethyl cellulose microspheres loaded with TiO2 nanoparticles. J. Appl. Polym. Sci. 2014, 131, 40822. [Google Scholar] [CrossRef]
- Basta, A.H.; Lotfy, V.F.; Micky, J.A.; Salem, A.M. Liquid crystal behavior of cellulose nanoparticle-ethyl cellulose composites: Preparation, characterization, and rheology. J. Appl. Polym. Sci. 2021, 138, 50067. [Google Scholar] [CrossRef]
- Iffat, W.; Shoaib, M.H.; Yousuf, R.I.; Qazi, F.; Mahmood, Z.A.; Muhammad, I.N.; Ahmed, K.; Ahmed, F.R.; Imtiaz, M.S. Use of Eudragit RS PO, HPMC K100M, Ethyl Cellulose, and Their Combination for Controlling Nicorandil Release from the Bilayer Tablets with Atorvastatin as an Immediate-Release Layer. J. Pharm. Innov. 2020. [Google Scholar] [CrossRef]
- Rowe, R.C. Molecular weight dependence of the properties of ethyl cellulose and hydroxypropyl methylcellulose films. Int. J. Pharm. 1992, 88, 405–408. [Google Scholar] [CrossRef]
- Akbuǧa, J. Furosemide-loaded ethyl cellulose microspheres prepared by spherical crystallization technique: Morphology and release characteristics. Int. J. Pharm. 1991, 76, 193–198. [Google Scholar] [CrossRef]
- Jalsenjak, I.; Nicolaidou, C.F.; Nixon, J.R. Dissolution from tablets prepared using ethyl cellulose microcapsules. J. Pharm. Pharmacol. 1977, 29, 169–172. [Google Scholar] [CrossRef]
- Shaikh, N.A.; Abidi, S.E.; Block, L.H. Evaluation of Ethylcellulose as A Matrix for Prolonged Release Formulations. I. Water Soluble Drugs: Acetaminophen and Theophylline. Drug Dev. Ind. Pharm. 2008, 13, 1345–1369. [Google Scholar] [CrossRef]
- Eszter, H.H.; Emese, B.; Mirella, M.; Andrea, F.K.; Tivadar, F. Preparation and in vitro characterization of valsartan-loaded ethyl cellulose and poly (methyl methacrylate) nanoparticles. RSC Adv. 2020, 10, 43915–43926. [Google Scholar]
- Feuser, P.E.; Bubniak, L.S.; Bodack, C.N.; Valério, A.; Silva, M.C.S.; Ricci-Júnior, E.; Sayer, C.; de Araújo, P.H.H. In Vitro Cytotoxicity of Poly (Methyl Methacrylate) Nanoparticles and Nanocapsules Obtained by Miniemulsion Polymerization for Drug Delivery Application. J. Nanosci. Nano. 2016, 16, 7669–7676. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Xia, B.J.; Huang, J.; Liao, B.; Liu, H.; Ou, B.L.; Chen, L.; Zhou, Z.H. Hypercrosslinked polystyrene microspheres with ultrahigh surface area and their application in gas storage. Mater. Chem. Phys. 2017, 199, 616–622. [Google Scholar] [CrossRef]
- El-Say, K.M.; El-Helw, A.M.; Ahmed, O.A.A.; Hosny, K.M.; Ahmed, T.A.; Kharshoum, R.M.; Fahmy, U.A.; Alsawahli, M. Statistical optimization of controlled release microspheres containing cetirizine hydrochloride as a model for water soluble drugs. Pharm. Dev. Technol. 2015, 20, 738–746. [Google Scholar] [CrossRef]
- Lu, J.; Toy, P.H. Organic polymer supports for synthesis and for reagent and catalyst immobilization. Chem. Rev. 2009, 109, 815–838. [Google Scholar] [CrossRef]
- Cheu, S.J.; Chen, R.R.L.; Chen, P.F.; Lin, W.J. In vitro modified release of acyclovir from ethyl cellulose microspheres. J. Microencapsul. 2001, 18, 559–565. [Google Scholar] [PubMed]
- Kurihara, H.; Asami, S.; Shibata, H.; Fukami, H.; Tanaka, T. Hypolipemic effect of Cyclocarya paliurus (Batal) Iljinskaja in lipid-loaded mice. Biol. Pharm. Bull. 2003, 26, 383–385. [Google Scholar] [CrossRef] [Green Version]
- Shu, R.G.; Xu, C.R.; Li, L.N. Study on the sweetness components of Cyclobalanopsis sinensis. Acta Pharm. Sin. 1995, 10, 757–761. [Google Scholar]
- Xie, M.Y.; Li, L. Overview of the research on chemical constituents and biological activities of Cyclocarya chinensis. Chin. Herb. Med. 2001, 4, 79–80. [Google Scholar]
- Zheng, X.R.; Zhang, M.J.; Shang, X.L.; Fang, S.Z.; Chen, F.M. Stem Canker on Cyclocarya paliurus Is Caused by Botryosphaeria dothidea. Plant Disease 2020, 104, 1032–1040. [Google Scholar] [CrossRef] [PubMed]
- Sundberg-Kövamees, M.; Grunewald, J.; Wahlström, J. Immune cell activation and cytokine release after stimulation of whole blood with pneumococcal C-polysaccharide and capsular polysaccharides. Int. J. Infect. Dis. 2016, 52, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.J.; Ding, J.X.; Xu, W.G.; Sun, T.M.; Xiao, H.H.; Zhuang, X.L.; Chen, X.S. Receptor and microenvironment dual-recognizable nanogel for targeted chemotherapy of highly metastatic malignancy. Nano Lett. 2017, 17, 4526–4533. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lv, T.; Min, L.; Xue, T.; Hui, L.; Zhang, W.; Ding, X.; Zhuang, Z. Anti-aging effect of polysaccharide from Bletilla striata on nematode Caenorhabditis elegans. Pharmacogn. Mag. 2015, 11, 449–454. [Google Scholar] [PubMed]
- Li, Y.G.; Ji, D.F.; Zhong, S.; Lv, Z.Q.; Lin, T.B. Cooperative anti-diabetic effects of deoxynojirimycin-polysaccharide by inhibiting glucose absorption and modulating glucose metabolism in streptozotocin-induced diabetic mice. PLoS ONE 2013, 8, e65892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, D.; Yang, X.; Gao, S.; Yao, J.; Mcclements, D.J. Influence of hydrocolloids (dietary fibers) on lipid digestion of protein-stabilized emulsions: Comparison of neutral, anionic, and cationic polysaccharides. J. Food Sci. 2016, 81, C1636–C1645. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.H.; Xin, L.; Shen, M.Y.; Nie, S.P.; Hui, Z.; Li, C.; Gong, D.M.; Xie, M.Y. Purification, physicochemical characterisation and anticancer activity of a polysaccharide from Cyclocarya paliurus leaves. Food Chem. 2013, 136, 1453–1460. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.R.; Cui, B.S.; Han, S.W.; Li, S. New dammarane triterpenoid saponins from the leaves of Cyclocarya paliurus. J. Asian Nat. Prod. Res. 2018, 20, 1019–1027. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.H.; Xie, M.Y.; Nie, S.P.; Shen, M.Y.; Wang, Y.X.; Li, C. Isolation, chemical composition and antioxidant activities of a water-soluble polysaccharide from Cyclocarya paliurus (Batal.) Iljinskaja. Food Chem. 2010, 119, 1626–1632. [Google Scholar] [CrossRef]
- Xie, M.Y.; Xie, J.H. Review about the research on Cyclocarya paliurus (Batal.) Iljinskaja. Food Sci. Biotechnol. 2008, 27, 113–121. [Google Scholar]
- Li, Q.; Hu, J.; Xie, J.; Nie, S.; Xie, M.Y. Isolation, structure, and bioactivities of polysaccharides from Cyclocarya paliurus (Batal.) Iljinskaja. Ann. N. Y. Acad. Sci. 2017, 1398, 20–29. [Google Scholar] [CrossRef]
- Shang, X.; Tan, J.-N.; Du, Y.; Liu, X.; Zhang, Z. Environmentally-Friendly Extraction of Flavonoids from Cyclocarya paliurus (Batal.) Iljinskaja Leaves with Deep Eutectic Solvents and Evaluation of Their Antioxidant Activities. Molecules 2018, 23, 2110. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Wang, Y.; Burkhart, T.A. Anti-inflammatory mechanism research of tanshinone II A by module-based network analysis. J. Bio-Med Mater. Eng. 2014, 24, 3815–3824. [Google Scholar]
- Thibault, L.; Emilie, D.; Caroline, W.; Eric, L. Supercritical Fluid Chromatography development of a predictive analytical tool to selectively extract bioactive compounds by supercritical fluid extraction and pressurised liquid extraction. J. Chromatogr. A 2020, 1632, 461582. [Google Scholar]
- Huang, K.J.; Wu, J.J.; Chiu, Y.H.; Lai, C.Y.; Chang, C.M.J. Designed polar cosolvent-modifified supercritical CO2 removing caffeine from and retaining catechins in green tea powder using response surface methodology. J. Agric. Food Chem. 2007, 55, 9014–9020. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.Z.; Zhu, L.H.; Wang, H.; Si, T.; He, Y.P.; Sun, Y.L. Preparation of polymer microspheres with controllable structures and investigation of their inter-connecting properties. Chem. Ind. Eng. Prog. 2020, 39, 658–666. [Google Scholar]
- Peng, W.W.; Zhang, Z.Y.; Ji, C.J.; Li, B.; Wan, C.P.; Shangguan, X.C. Chemical constituents from the aerial part of Cyclocarya paliurus (Batal.) Iljinsk (Juglandaceae). Biochem. Syst. Ecol. 2018, 78, 110–112. [Google Scholar] [CrossRef]
- Li, Q.; Xie, B.; Wang, Y.; Peng, L.; Li, Y.; Li, B.; Liu, S. Cellulose nanofibrils from Miscanthus floridulus straw as green particle emulsifier for O/W Pickering emulsion. Food Hydrocolloids 2019, 97, 105214. [Google Scholar] [CrossRef]
- Jmel, M.A.; Anders, N.; Messaoud, G.B.; Messaoud, G.B.; Marzouki, M.N.; Smaali, I. The stranded macroalga Ulva lactuca as a new alternative source of cellulose: Extraction, physicochemical and rheological characterization. J. Clean. Prod. 2019, 234, 1421–1427. [Google Scholar] [CrossRef]
- Falkeborg, M.; Guo, Z. Dodecenyl succinylated alginate (DSA) as a novel dual-function emulsifier for improved fish oil-in-water emulsions. Food Hydrocoll. 2015, 46, 10–18. [Google Scholar] [CrossRef]
- Rodríguez, F.; Castillo-Ortega, M.M.; Encinas, J.C.; Grijalva, H.; Brown, F.; Sánchez-Corrales, V.M.; Castaño, V.M. Preparation, characterization, and adsorption properties of cellulose acetate-polyaniline membranes. J. Appl. Polym. Sci. 2009, 111, 1216–1224. [Google Scholar] [CrossRef]
- Castillo-Ortega, M.M.; Romero-García, J.; Rodriguez, F.; Nájera-Luna, A.; Herrera-Franco, P.J. Fibrous membranes of cellulose acetate and poly (vinyl pyrrolidone) by electrospinning method: Preparation and characterization. J. Appl. Polym. Sci. 2010, 116, 1873–1878. [Google Scholar] [CrossRef]
- Wu, J.H.; Wang, X.J.; Li, S.J.; Ying, X.Y.; Hu, J.B.; Xu, X.L.; Kang, X.Q.; You, J.; Du, Y.Z. Preparation of Ethyl Cellulose Microspheres for Sustained Release of Sodium Bicarbonate. Iran. J. Pharm. Res. 2019, 18, 556–568. [Google Scholar]
- Pérez-Martínez, J.I.; Morillo, E.; Maqueda, C.; Ginés, J.M. Ethyl cellulose polymer microspheres for controlled release of norfluazon. Pest Manag. Sci. 2001, 57, 688–694. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.J.; Wu, T.L. Modification of the initial release of a highly water-soluble drug from ethyl cellulose microspheres. J. Microencapsul. 1999, 16, 639–646. [Google Scholar] [PubMed]
- Ho, Y.S. Citation review of lagergren kinetic rate equation on adsorption reactions. Scientometrics 2004, 59, 171–177. [Google Scholar]
- Ho, Y.S.; Mckay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Zhang, X.F.; Xu, Y.; Zhang, Q.; Cao, K.; Mu, X.N. Simultaneous separation and purification of (-)-epigallocatechin gallate and caffeine from tea extract by size exclusion effect on modified porous adsorption material. J. Chromatogr. B 2016, 1031, 29–36. [Google Scholar] [CrossRef]
Time (min) | Mobile Phase B (%) | Mobile Phase C (%) |
---|---|---|
0.0 | 15.0 | 85.0 |
5.0 | 20.0 | 80.0 |
10.0 | 24.0 | 76.0 |
19.0 | 29.0 | 71.0 |
20.0 | 30.0 | 70.0 |
22.5 | 31.0 | 69.0 |
23.0 | 31.5 | 68.5 |
25.0 | 32.0 | 68.0 |
28.0 | 32.5 | 67.5 |
31.0 | 33.5 | 66.5 |
Adsorption Time (min) | Peak Area | Adsorptive Capacity (mg/g) |
---|---|---|
0 | 75.8 | 0 |
15 | 70.2 | 0.81 |
30 | 66 | 1.51 |
45 | 58 | 2.74 |
60 | 55.7 | 3.1 |
120 | 38.8 | 5.71 |
180 | 27.6 | 7.44 |
240 | 22.3 | 7.90 |
300 | 19.6 | 7.90 |
420 | 19.2 | 7.89 |
540 | 19.2 | 7.89 |
660 | 19.2 | 7.89 |
720 | 19.2 | 7.89 |
Pseudofirst-Order-Model | Pseudosecond-Order-Model | ||||||
---|---|---|---|---|---|---|---|
Adsorbents | qe (exp) (mg/g) | K1 (min−1) | qe (mg/g) | R2 | K2 (g/mg min) | Qe (cal) (mg/g) | R2 |
7.890 | 0.009 | 8.143 | 0.9848 | 0.0011 | 9.6594 | 0.9556 |
Stage | Number of Times | Peak Area | Ratio of Peak Area | C (mg/mL) |
---|---|---|---|---|
a | 0 | 0 | 0 | 0 |
1 | 78.2 | 15.358 | 0.0099 | |
2 | 90.8 | 14.932 | 0.0123 | |
3 | 47.7 | 37.144 | 0.0043 | |
4 | 46.4 | 41.071 | 0.0040 | |
5 | 0 | 0 | 0 | |
6 | 0 | 0 | 0 | |
b | 1 | 140.8 | 74.787 | 0.0215 |
2 | 141 | 72.987 | 0.0216 | |
3 | 137.4 | 82.227 | 0.0209 | |
4 | 78.8 | 68.380 | 0.0100 | |
5 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Zhang, L.; Zhai, X.; Liu, Q.; Sun, L.; Liu, M.; An, L.; Xian, L.; Zhang, P.; Chen, L. Study on Adsorption Performance of Benzoic Acid in Cyclocarya paliurus Extract by Ethyl Cellulose Microspheres. Chemistry 2021, 3, 1113-1125. https://doi.org/10.3390/chemistry3040081
Zhao Y, Zhang L, Zhai X, Liu Q, Sun L, Liu M, An L, Xian L, Zhang P, Chen L. Study on Adsorption Performance of Benzoic Acid in Cyclocarya paliurus Extract by Ethyl Cellulose Microspheres. Chemistry. 2021; 3(4):1113-1125. https://doi.org/10.3390/chemistry3040081
Chicago/Turabian StyleZhao, Yamin, Lujun Zhang, Xiaoxue Zhai, Qian Liu, Lebing Sun, Mengshi Liu, Lili An, Liang Xian, Ping Zhang, and Lihua Chen. 2021. "Study on Adsorption Performance of Benzoic Acid in Cyclocarya paliurus Extract by Ethyl Cellulose Microspheres" Chemistry 3, no. 4: 1113-1125. https://doi.org/10.3390/chemistry3040081
APA StyleZhao, Y., Zhang, L., Zhai, X., Liu, Q., Sun, L., Liu, M., An, L., Xian, L., Zhang, P., & Chen, L. (2021). Study on Adsorption Performance of Benzoic Acid in Cyclocarya paliurus Extract by Ethyl Cellulose Microspheres. Chemistry, 3(4), 1113-1125. https://doi.org/10.3390/chemistry3040081