Self-Assembly of a Rare High Spin FeII/PdII Tetradecanuclear Cubic Cage Constructed via the Metalloligand Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. MS, NMR, SEM, EDS and X-ray Mapping Measurements
2.2. Magnetic Measurements
2.3. Single Crystal X-ray Diffraction Measurements
2.4. General Synthetic Procedures
3. Results and Discussion
3.1. Characterisation of Ligand (2) and Its Precursor
3.2. Characterisation of Fe(II) Metalloligand (3)
3.3. Characterization of the Coordination Cage [Fe8Pd6L8]28+
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McConnel, A.J. Metallosupramolecular cages: From design principles and characterisation techniques to applications. Chem. Soc. Rev. 2022, 51, 2957–2971. [Google Scholar] [CrossRef] [PubMed]
- Hardy, M.; Lützen, A. Better Together: Functional Heterobimetallic Macrocyclic and Cage-like Assemblies. Chem. Eur. J. 2020, 26, 13332–13346. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Chen, Q.; Wu, M.; Jiang, F.; Hong, M. Controllable Coordination-Driven Self-Assembly: From Discrete Metallocages to Infinite Cage-Based Frameworks. Acc. Chem. Res. 2015, 48, 201–210. [Google Scholar] [CrossRef]
- Clegg, J.K.; Li, F.; Lindoy, L.F. Di-, Tri- and Oligometallic Platforms: Versatile Components for Use in Metallo-Supramolecular Chemistry. Coord. Chem. Rev. 2013, 257, 2536–2550. [Google Scholar] [CrossRef]
- Ward, M.D.; Raithby, P.R. Functional Behaviour from Controlled Self-Assembly: Challenges and Prospects. Chem. Soc. Rev. 2013, 42, 1619–1636. [Google Scholar] [CrossRef]
- Young, N.J.; Hay, B.P. Structural Design Principles for Self-Assembled Coordination Polygons and Polyhedra. Chem. Commun. 2013, 49, 1354–1379. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Lindoy, L.F. Metalloligand Strategies for Assembling Heteronuclear Nanocages—Recent Developments. Aust. J. Chem. 2019, 72, 731–741. [Google Scholar] [CrossRef]
- Li, L.; Fanna, D.J.; Shepherd, N.D.; Lindoy, L.F.; Li, F. Constructing Coordination Nanocages: The Metalloligand Approach. J. Incl. Phenom. Macrocycl. Chem. 2015, 82, 3–12. [Google Scholar] [CrossRef]
- Caulder, D.L.; Raymond, K.N. The Rational Design of High Symmetry Coordination Clusters. J. Chem. Soc. Dalton Trans. 1999, 1185–1200. [Google Scholar] [CrossRef]
- Fujita, M.; Umemoto, K.; Yoshizawa, M.; Fujita, N.; Kusukawa, K.; Biradha, K. Molecular paneling via Coordination. Chem. Commun. 2001, 509–518. [Google Scholar] [CrossRef]
- Zhang, D.; Ronson, T.K.; Nitschke, J.R. Functional Capsules via Subcomponent Self-Assembly. Acc. Chem. Res. 2018, 51, 2423–2436. [Google Scholar] [CrossRef] [PubMed]
- Cook, T.R.; Stang, P.J. Recent Developments in the Preparation and Chemistry of Metallcycles and Metallacages via Coordination. Chem. Rev. 2015, 115, 7001–7045. [Google Scholar] [CrossRef] [PubMed]
- Leninger, S.; Olenyuk, B.; Stang, P.J. Self-Assembly of Discrete Cyclic Nanostructures Mediated by Transition Metals. Chem. Rev. 2000, 100, 853–908. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarty, R.; Mukherjee, P.S.; Stang, P.J. Supramolecular Coordination: Self-Assembly of Finite Two- and Three-Dimensional Ensembles. Chem. Rev. 2011, 111, 6810–6918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, C.J.; Toste, F.D.; Bergman, R.G.; Raymond, K.N. Supramolecular Catalysis in Metal–Ligand Cluster Hosts. Chem. Rev. 2015, 115, 3012–3035. [Google Scholar] [CrossRef]
- Smulders, M.M.J.; Riddell, I.A.; Browne, C.; Nitschke, J.R. Building on Architectural Principles for Three-Dimensional Metallosupramolecular Construction. Chem. Soc. Rev. 2013, 42, 1728–1754. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Avdeev, M.; Lindoy, L.F.; Harman, D.G.; Zhen, R.; Cheng, Z.; Aldrich-Wright, J.R.; Li, F. Self-assembly of a unique 3d/4f heterometallic square prismatic box-like coordination cage. Dalton Trans. 2016, 45, 9407–9411. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.-Y.; Gao, W.-X.; Lin, L.; Jin, G.-X. Recent Advances in the Construction and Applications of Heterometallic Macrocycles and Cages. Coord. Chem. Rev. 2017, 344, 323–344. [Google Scholar] [CrossRef]
- Li, H.; Yao, Z.-J.; Liu, D.; Jin, G.-X. Multi-Component Coordination-Driven Self-Assembly toward Heterometallic Macrocycles and Cages. Coord. Chem. Rev. 2015, 293–294, 139–157. [Google Scholar] [CrossRef]
- Bousseksou, A.; Molnár, G.; Real, J.A.; Tanaka, K. Spin Crossover and Photomagnetism in Dinuclear Iron(II) Compounds. Coord. Chem. Rev. 2007, 251, 1822–1833. [Google Scholar] [CrossRef]
- Bousseksou, A.; Molnár, G.; Salmon, L.; Nicolazzi, W. Molecular Spin Crossover Phenomenon: Recent Achievements and Prospects. Chem. Soc. Rev. 2011, 40, 3313–3335. [Google Scholar] [CrossRef] [PubMed]
- Hogue, R.W.; Singh, S.; Brooker, S. Spin Crossover in Discrete Polynuclear Iron(II) Complexes. Chem. Soc. Rev. 2018, 47, 7303–7338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McConnell, A.J. Spin-State Switching in Fe(II) Helicates and Cages. Supramol. Chem. 2017, 30, 858–868. [Google Scholar] [CrossRef]
- Gütlich, P.; Gaspar, A.B.; Garcia, Y. Spin State Switching in Iron Coordination Compounds. Beilstein J. Org. Chem. 2013, 9, 342–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duriska, M.B.; Neville, S.M.; Moubaraki, B.; Cashion, J.D.; Halder, G.J.; Chapman, K.W.; Balde, C.; Lètard, J.; Murray, K.S.; Kepert, C.J.; et al. A Nanoscale Molecular Switch Triggered by Thermal, Light, and Guest Perturbation. Angew. Chem. Int. Ed. 2009, 121, 2587–2590. [Google Scholar] [CrossRef]
- Li, L.; Saigo, N.; Zhang, Y.; Fanna, D.J.; Shepherd, N.D.; Clegg, J.K.; Zheng, R.; Hayami, S.; Lindoy, L.F.; Aldrich-Wright, J.R.; et al. A Large Spin-Crossover [Fe4L4]8+ Tetrahedral Cage. J. Mat. Chem. C. 2015, 3, 7878–7882. [Google Scholar] [CrossRef] [Green Version]
- Struch, N.; Bannwarth, C.; Ronson, T.K.; Lorenz, Y.; Mienert, B.; Wagner, N.; Engeser, M.; Bill, E.; Puttreddy, R.; Rissanen, K.; et al. An Octanuclear Metallosupramolecular Cage Designed to Exhibit Spin-Crossover Behavior. Angew. Chem. Int. Ed. 2017, 56, 4930–4935. [Google Scholar] [CrossRef]
- Li, L.; Craze, A.R.; Mustonen, O.; Zenno, H.; Whittaker, J.J.; Hayami, S.; Lindoy, L.F.; Marjo, C.E.; Clegg, J.K.; Aldrich-Wright, J.R.; et al. A mixsed-spin spin-crossover thiozolylimine [Fe4L6]8+ cage. Dalton Trans. 2019, 48, 9935–9938. [Google Scholar] [CrossRef]
- Ferguson, A.; Squire, M.A.; Siretanu, D.; Mitcov, D.; Mathonière, C.; Clérac, R.; Kruger, P.E. A Face-Capped [Fe4L4]8+ Spin Crossover Tetrahedral Cage. Chem. Commun. 2013, 49, 1597–1599. [Google Scholar] [CrossRef] [Green Version]
- Bilbeisi, R.A.; Zarra, S.; Feltham, H.L.C.; Jameson, G.N.L.; Clegg, J.K.; Brooker, S.; Nitschke, J.R. Guest Binding Subtly Influences Spin Crossover in an FeII4L4 Capsule. Chem. Eur. J. 2013, 19, 8058–8062. [Google Scholar] [CrossRef]
- Li, F.; Sciortino, N.F.; Clegg, J.K.; Neville, S.M.; Kepert, C.J. Self-Assembly of an Octanuclear High-Spin FeII Molecular Cage. Aust. J. Chem. 2014, 67, 1625–1628. [Google Scholar] [CrossRef]
- Hardy, M.; Struch, N.; Holstein, J.J.; Schnakenburg, G.; Wagner, N.; Engeser, M.; Beck, J.; Clever, G.H.; Lützen, A. Dynamic Complex-to-Complex Transformations of Heterobimetallic Systems Influence the Cage Structure or Spin State of Iron(II) Ions. Angew. Chem. Int. Ed. 2020, 59, 3195–3200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McConnell, A.R.; Aitchison, C.M.; Grommet, A.B.; Nitschke, J.R. Subcomponent Exchange Transforms an FeII4L4 Cage from High- to Low-Spin, Switching Guest Release in a Two-Cage System. J. Am. Chem. Soc. 2017, 139, 6294–6297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, T.F.; Holloway, L.R.; Nye, P.P.; Lyon, Y.; Beran, G.J.O.; Harman, W.H.; Julian, R.R.; Hooley, R.J. Small Structural Variations Have Large Effects on the Assembly Properties and Spin State of Room Temperature High Spin Fe(II) Iminopyridine Cages. Inorg. Chem. 2018, 57, 13386–13396. [Google Scholar] [CrossRef]
- Craze, A.R.; Bhadbhade, M.M.; Komatsumaru, Y.; Marjo, C.E.; Hayami, S.; Li, F. A Rare Example of a Complete, Incomplete, and Non-Occurring Spin Transition in a [Fe2L3]X4 Series Driven by a Combination of Solvent-and Halide-Anion-Mediated Steric Factors. Inorg. Chem. 2020, 59, 1274–1283. [Google Scholar] [CrossRef]
- Craze, A.; Bhadbhade, M.; Kepert, C.; Lindoy, L.; Marjo, C.; Li, F.; Craze, A.R.; Bhadbhade, M.M.; Kepert, C.J.; Lindoy, L.F.; et al. Solvent Effects on the Spin-Transition in a Series of Fe(II) Dinuclear Triple Helicate Compounds. Crystals. 2018, 8, 376. [Google Scholar] [CrossRef] [Green Version]
- Craze, A.R.; Sciortino, N.F.; Badbhade, M.M.; Kepert, C.J.; Marjo, C.E.; Li, F. Investigation of the Spin Crossover Properties of Three Dinulear Fe(II) Triple Helicates by Variation of the Steric Nature of the Ligand Type. Inorganics. 2017, 5, 62. [Google Scholar] [CrossRef] [Green Version]
- Cowieson, N.P.; Aragao, D.; Clift, M.; Ericsson, D.J.; Gee, C.; Harrop, S.J.; Mudie, N.; Panjikar, S.; Price, J.R.; Riboldi-Tunnicliffe, A.; et al. MX1: A bending-magnet crystallography beamline serving both chemical and macromolecular crystallography communities at the Australian Synchrotron. J. Synchrotron Rad. 2015, 22, 187–190. [Google Scholar] [CrossRef]
- Kabsch, W. XDS. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 1993, 26, 795–800. [Google Scholar] [CrossRef]
- SADABS, version 2014/5; Bruker AXS Inc.: Madison, WI, USA, 2001.
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta. Cryst. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. SHELX-2014: Programs for Crystal Structure Analysis; University of Göttingen: Göttingen, Lower Saxony, Germany, 2014. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta. Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Che, C.; Li, S.; Yang, B.; Xin, S.; Yu, Z.; Shao, T.; Tao, C.; Lin, S.; Yang, Z. Synthesis and characterization of Saint-75 derivatives as Hedgehog-pathway inhibitors. Beilstein J. Org. Chem. 2012, 8, 841–849. [Google Scholar] [CrossRef] [PubMed]
Compound | 1-(pyridine-4-yl)-1H-imidazole-4-carbaldehyde | FeL(BF4)2.CH3OH (3) | Cage (1) |
---|---|---|---|
CCDC Number | 2170053 | 2170063 | 2170771 |
Empirical formula | C9H7N3O | C34H37B2F8FeN13O | C276H282B28F112Fe8N110OPd6 |
Formula weight | 173.18 | 873.23 | 8671.98 |
Temperature/K | 100 | 100 | 100 |
Crystal system | Monoclinic | Monoclinic | Cubic |
Space group | P21/c | P21/c | Fm-3c |
a/Å | 3.6800 (7) | 11.565 (2) | 46.361 (5) |
b/Å | 22.050 (4) | 15.555 (3) | 46.361 (5) |
c/Å | 9.6300 (19) | 21.169 (4) | 46.361 (5) |
α/° | 90 | 90 | 90 |
β/° | 99.41 (3) | 91.87 (3) | 90 |
γ/° | 90 | 90 | 90 |
Volume/Å3 | 770.9 (3) | 3806.1 (13) | 99,643 (35) |
Z | 4 | 4 | 8 |
ρcalcg/cm3 | 1.492 | 1.524 | 1.156 |
μ/mm−1 | 0.103 | 0.485 | 0.526 |
F(000) | 360 | 1792 | 34784 |
Crystal size/mm3 | 0.2 × 0.02 × 0.02 | 0.02 × 0.02 × 0.01 | 0.2 × 0.2 × 0.2 |
Radiation/Å | MoKα (λ = 0.71073) | MoKα (λ = 0.71073) | MoKα (λ = 0.71073) |
2Θ range for data collection/° | 3.694 to 52.744 | 3.25 to 57.062 | 4.304 to 34.444 |
Index ranges | −4 ≤ h ≤ 4, −27 ≤ k ≤ 27, −11 ≤ l ≤ 11 | −12 ≤ h ≤ 12, −18 ≤ k ≤ 18, −24 ≤ l ≤ 24 | −38 ≤ h ≤ 38, −38 ≤ k ≤ 38, −38 ≤ l ≤ 38 |
Reflections collected | 16,679 | 47,189 | 96,862 |
Independent reflections | 16,679 [Rint = 0.1048, Rsigma = 0.1185] | 7210 [Rint = 0.0239, Rsigma = 0.0134] | 1343 [Rint = 0.1650, Rsigma = 0.0174] |
Data/restraints/parameters | 16,679/0/119 | 7210/0/534 | 1343/46/125 |
Goodness-of-fit on F2 | 1.13 | 1.04 | 1.814 |
Final R indexes [I > = 2σ (I)] | R1 = 0.0782, wR2 = 0.2147 | R1 = 0.0274, wR2 = 0.0710 | R1 = 0.1323, wR2 = 0.3998 |
Final R indexes [all data] | R1 = 0.1222, wR2 = 0.2889 | R1 = 0.0277, wR2 = 0.0712 | R1 = 0.1525, wR2 = 0.4268 |
Largest diff. peak/hole/e Å−3 | 0.42/−0.62 | 0.57/−0.39 | 1.83/−0.46 |
Compound | Average Fe(II)-N Bond Length (Å) | ζ (Å) | Δ | Σ (Degrees) | Θ (Degrees) |
---|---|---|---|---|---|
FeL(BF4)2 (100K) | 2.20 | 0.16 | 0.00018 | 105.0 | 280.4 |
1 (100K) | 2.19 | 0.11 | 0.000066 | 131.3 | 374.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, H.; Craze, A.R.; Taira, T.; Wallis, M.J.; Bhadbhade, M.M.; Tian, R.; Fanna, D.J.; Wuhrer, R.; Hayami, S.; Clegg, J.K.; et al. Self-Assembly of a Rare High Spin FeII/PdII Tetradecanuclear Cubic Cage Constructed via the Metalloligand Approach. Chemistry 2022, 4, 535-547. https://doi.org/10.3390/chemistry4020038
Min H, Craze AR, Taira T, Wallis MJ, Bhadbhade MM, Tian R, Fanna DJ, Wuhrer R, Hayami S, Clegg JK, et al. Self-Assembly of a Rare High Spin FeII/PdII Tetradecanuclear Cubic Cage Constructed via the Metalloligand Approach. Chemistry. 2022; 4(2):535-547. https://doi.org/10.3390/chemistry4020038
Chicago/Turabian StyleMin, Hyunsung, Alexander R. Craze, Takahiro Taira, Matthew J. Wallis, Mohan M. Bhadbhade, Ruoming Tian, Daniel J. Fanna, Richard Wuhrer, Shinya Hayami, Jack K. Clegg, and et al. 2022. "Self-Assembly of a Rare High Spin FeII/PdII Tetradecanuclear Cubic Cage Constructed via the Metalloligand Approach" Chemistry 4, no. 2: 535-547. https://doi.org/10.3390/chemistry4020038
APA StyleMin, H., Craze, A. R., Taira, T., Wallis, M. J., Bhadbhade, M. M., Tian, R., Fanna, D. J., Wuhrer, R., Hayami, S., Clegg, J. K., Marjo, C. E., Lindoy, L. F., & Li, F. (2022). Self-Assembly of a Rare High Spin FeII/PdII Tetradecanuclear Cubic Cage Constructed via the Metalloligand Approach. Chemistry, 4(2), 535-547. https://doi.org/10.3390/chemistry4020038