A New Unnatural Amino Acid Derived from the Modification of 4′-(p-tolyl)-2,2′:6′,2″-terpyridine and Its Mixed-Ligand Complexes with Ruthenium: Synthesis, Characterization, and Photophysical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Fluorescence Emission Studies
2.4. Synthesis of the Compounds and the Ruthenium Complexes
3. Results and Discussion
3.1. Synthesis
3.2. Characterization
3.3. Photophysical Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Champe, P.; Harvey, R. Amino Acids Amino Acids. Lippincott’s Illus. Rev. Biochem. 2003, 96, 1–12. [Google Scholar] [CrossRef]
- Hönig, M.; Sondermann, P.; Turner, N.J.; Carreira, E.M. Enantioselective Chemo- and Biocatalysis: Partners in Retrosynthesis. Angew. Chem. Int. Ed. 2017, 56, 8942–8973. [Google Scholar] [CrossRef]
- Xue, Y.P.; Cao, C.H.; Zheng, Y.G. Enzymatic asymmetric synthesis of chiral amino acids. Chem. Soc. Rev. 2018, 47, 1516–1561. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.T.; Zhang, L.; Martenyi, F.; Lowe, S.L.; Jackson, K.A.; Andreev, B.V.; Avedisova, A.S.; Bardenstein, L.M.; Gurovich, I.Y.; Morozova, M.A.; et al. Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: A randomized Phase 2 clinical trial. Nat. Med. 2007, 13, 1102–1107. [Google Scholar] [CrossRef] [PubMed]
- Kindler, H.L.; Burris, H.A.; Sandler, A.B.; Oliff, I.A. A phase II multicenter study of L-alanosine, a potent inhibitor of adenine biosynthesis, in patients with MTAP-deficient cancer. Investig. New Drugs 2009, 27, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Blaskovich, M.A.T. Unusual Amino Acids in Medicinal Chemistry. J. Med. Chem. 2016, 59, 10807–10836. [Google Scholar] [CrossRef] [PubMed]
- Axup, J.Y.; Bajjuri, K.M.; Ritland, M.; Hutchins, B.M.; Kim, C.H.; Kazane, S.A.; Halder, R.; Forsyth, J.S.; Santidrian, A.F.; Stafin, K.; et al. Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc. Natl. Acad. Sci. USA 2012, 109, 16101–16106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, V.N.; Comotti, A.; Sozzani, P.; Bracco, S.; Bonge-Hansen, T.; Hennum, M.; Görbitz, C.H. Microporous Molecular Materials from Dipeptides Containing Non-proteinogenic Residues. Angew. Chem. Int. Ed. 2015, 54, 15684–15688. [Google Scholar] [CrossRef]
- Zerfas, B.L.; Coleman, R.A.; Salazar-Chaparro, A.F.; MacAtangay, N.J.; Trader, D.J. Fluorescent Probes with Unnatural Amino Acids to Monitor Proteasome Activity in Real-Time. ACS Chem. Biol. 2020, 15, 2588–2596. [Google Scholar] [CrossRef]
- Gupta, A.; Garreffi, B.P.; Guo, M. Facile synthesis of a novel genetically encodable fluorescent α-amino acid emitting greenish blue light. Chem. Commun. 2020, 56, 12578–12581. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Liu, Y.-H.; Zhang, Z.-Z.; Yan, S.-Y.; Chen, K.; Shi, B.-F. Divergent and Stereoselective Synthesis of β-Silyl-α-Amino Acids through Palladium-Catalyzed Intermolecular Silylation of Unactivated Primary and Secondary C−H Bonds. Angew. Chem. 2016, 128, 14063–14066. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Hu, F.; Zhang, S.-Q.; Shi, B.-F. Pd(ii)-catalyzed alkylation of unactivated C(sp3)–H bonds: Efficient synthesis of optically active unnatural α-amino acids. Chem. Sci. 2013, 4, 3906–3911. [Google Scholar] [CrossRef]
- He, G.; Wang, B.; Nack, W.A.; Chen, G. Syntheses and Transformations of α-Amino Acids via Palladium-Catalyzed Auxiliary-Directed sp3 C-H Functionalization. Acc. Chem. Res. 2016, 49, 635–645. [Google Scholar] [CrossRef]
- Sengupta, S.; Mehta, G. Late stage modification of peptides via C[sbnd]H activation reactions. Tetrahedron Lett. 2017, 58, 1357–1372. [Google Scholar] [CrossRef]
- Manallack, D.T.; Prankerd, R.J.; Nassta, G.C.; Ursu, O.; Oprea, T.I.; Chalmers, D.K. A Chemogenomic Analysis of Ionization Constants-Implications for Drug Discovery. ChemMedChem 2013, 8, 242–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, H.; Kaur, K. Interaction of antibacterial drug ampicillin with glycine and its dipeptides analyzed by volumetric and acoustic methods at different temperatures. Thermochim. Acta 2013, 551, 40–45. [Google Scholar] [CrossRef]
- Feng, H.; Ding, J.; Zhu, D.; Liu, X.; Xu, X.; Zhang, Y.; Zang, S.; Wang, D.C.; Liu, W. Structural and mechanistic insights into NDM-1 catalyzed hydrolysis of cephalosporins. J. Am. Chem. Soc. 2014, 136, 14694–14697. [Google Scholar] [CrossRef]
- Yang, M.; Jiang, X.; Shi, Z.J. Direct amidation of the phenylalanine moiety in short peptides via Pd-catalyzed C-H activation/C-N formation. Org. Chem. Front. 2015, 2, 51–54. [Google Scholar] [CrossRef]
- Tao, Q.; Li, Y.N.; Tang, W.J.; Liu, P.Y.; Yu, F.; He, Y.P. Di-ortho-C[sbnd]H arylation of phenylalanine: A bimetallic interaction between Pd(IV)-Ag(I). Tetrahedron Lett. 2021, 74, 153158. [Google Scholar] [CrossRef]
- Schubert, U.S.; Winter, A.; Newkome, G.R. Terpyridine-Based Materials: For Catalytic, Optoelectronic and Life Science Applications; Wiley-VCH Verlag GmbH & Co., KGaA: Weinheim, Germany, 2012. [Google Scholar]
- Fan, Y.; Zhu, Y.M.; Dai, F.R.; Zhang, L.Y.; Chen, Z.N. Photophysical and anion sensing properties of platinum(ii) terpyridyl complexes with phenolic ethynyl ligands. J. Chem. Soc. Dalt. Trans. 2006, 3885–3892. [Google Scholar] [CrossRef]
- Ma, Z.; Lu, W.; Liang, B.; Pombeiro, A.J.L. Synthesis, characterization, photoluminescent and thermal properties of zinc(ii) 4′-phenyl-terpyridine compounds. New J. Chem. 2013, 37, 1529–1537. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, Q.; Alegria, E.C.B.A.; Da Silva, M.F.C.G.; Martins, L.M.D.R.S.; Telo, J.P.; Correia, I.; Pombeiro, A.J.L. Synthesis and structure of copper complexes of a N6O4 macrocyclic ligand and catalytic application in alcohol oxidation. Catalysts 2019, 9, 424. [Google Scholar] [CrossRef] [Green Version]
- Shikhova, E.; Danilov, E.O.; Kinayyigit, S.; Pomestchenko, I.E.; Tregubov, A.D.; Camerel, F.; Retailleau, P.; Ziessel, R.; Castellano, F.N. Excited-state absorption properties of platinum(II) terpyridyl acetylides. Inorg. Chem. 2007, 46, 3038–3048. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Cao, Y.; Li, Q.; Guedes da Silva, M.F.C.; Fraústo da Silva, J.J.R.; Pombeiro, A.J.L. Synthesis, characterization, solid-state photo-luminescence and anti-tumor activity of zinc(II) 4′-phenyl-terpyridine compounds. J. Inorg. Biochem. 2010, 104, 704–711. [Google Scholar] [CrossRef]
- Mughal, E.U.; Mirzaei, M.; Sadiq, A.; Fatima, S.; Naseem, A.; Naeem, N.; Fatima, N.; Kausar, S.; Altaf, A.A.; Zafar, M.N.; et al. Terpyridine-metal complexes: Effects of different substituents on their physico-chemical properties and density functional theory studies: Properties of terpyridine base complexes. R. Soc. Open Sci. 2020, 7, 201208. [Google Scholar] [CrossRef] [PubMed]
- Ryan, R.T.; Stevens, K.C.; Calabro, R.; Parkin, S.; Mahmoud, J.; Kim, D.Y.; Heidary, D.K.; Glazer, E.C.; Selegue, J.P. Bis-tridentate N-Heterocyclic Carbene Ru(II) Complexes are Promising New Agents for Photodynamic Therapy. Inorg. Chem. 2020, 59, 8882–8892. [Google Scholar] [CrossRef] [PubMed]
- Jakubikova, E.; Chen, W.; Dattelbaum, D.M.; Rein, F.N.; Rocha, R.C.; Martin, R.L.; Batista, E.R. Electronic structure and spectroscopy of [Ru(tpy)2]2+, [Ru(tpy)(bpy)(H2O)]2+, and [Ru(tpy)(bpy)(Cl)]+. Inorg. Chem. 2009, 48, 10720–10725. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Kundu, P.; Kondaiah, P.; Chakravarty, A.R. BODIPY-Ruthenium(II) Bis-Terpyridine Complexes for Cellular Imaging and Type-I/-II Photodynamic Therapy. Inorg. Chem. 2021, 60, 16178–16193. [Google Scholar] [CrossRef] [PubMed]
- Hofmeier, H.; Schubert, U.S. Recent developments in the supramolecular chemistry of terpyridine–metal complexes. Chem. Soc. Rev. 2004, 33, 373–399. [Google Scholar] [CrossRef] [PubMed]
- Puntoriero, F.; Campagna, S.; Stadler, A.; Lehn, J. Luminescence properties and redox behavior of Ru(II) molecular racks. Coord. Chem. Rev. 2008, 252, 2480–2492. [Google Scholar] [CrossRef]
- Liu, P.; Shi, G.; Chen, X. Terpyridine-Containing π-Conjugated Polymers for Light-Emitting and Photovoltaic Materials. Front. Chem. 2020, 8, 592055. [Google Scholar] [CrossRef] [PubMed]
- Sauvage, J.P.; Collin, J.P.; Chambron, J.C.; Guillerez, S.; Coudret, C.; Balzani, V.; Barigelletti, F.; De Cola, L.; Flamigni, L. Ruthenium(II) and Osmium(II) Bis(terpyridine) Complexes in Covalently-Linked Multicomponent Systems: Synthesis, Electrochemical Behavior, Absorption Spectra, and Photochemical and Photophysical Properties. Chem. Rev. 1994, 94, 993–1019. [Google Scholar] [CrossRef]
- Ziessel, R. Making New Supermolecules for the Next Century: Multipurpose Reagents from Ethynyl-Grafted Oligopyridines. Synthesis 1999, 1999, 1839–1865. [Google Scholar] [CrossRef]
- Breivogel, A.; Hempel, K.; Heinze, K. Dinuclear bis(terpyridine)ruthenium(II) complexes by amide coupling of ruthenium amino acids: Synthesis and properties. Inorg. Chim. Acta 2011, 374, 152–162. [Google Scholar] [CrossRef]
- Ypsilantis, K.; Plakatouras, J.C.; Manos, M.J.; Kourtellaris, A.; Markopoulos, G.; Kolettas, E.; Garoufis, A. Stepwise synthesis, characterization, DNA binding properties and cytotoxicity of diruthenium oligopyridine compounds conjugated with peptides. Dalt. Trans. 2018, 47, 3549–3567. [Google Scholar] [CrossRef]
- Akasaka, T.; Inoue, H.; Kuwabara, M.; Mutai, T.; Otsuki, J.; Araki, K. Synthesis and properties of an efficient and switchable photosensitizing unit, [Ru(4,4′-diphenyl-2,2′-bipyridine)2(7-amino-dipyrido[3,2-a:2′,3′-c]phenazine)]2+, for a photo-induced energy transfer systemElectronic supplementary information (ESI) available. Dalt. Trans. 2003, 815–821. [Google Scholar] [CrossRef]
- Wang, H.; Ji, X.; Li, Z.; Zhu, C.N.; Yang, X.; Li, T.; Wu, Z.L.; Huang, F. Preparation of a white-light-emitting fluorescent supramolecular polymer gel with a single chromophore and use of the gel to fabricate a protected quick response code. Mater. Chem. Front. 2017, 1, 167–171. [Google Scholar] [CrossRef]
- Smith, C.B.; Raston, C.L.; Sobolev, A.N. Poly(ethyleneglycol)(PEG): A versatile reaction medium in gaining access to 4′-(pyridyl)-terpyridines. Green Chem. 2005, 7, 650–654. [Google Scholar] [CrossRef]
- Bhaumik, C.; Das, S.; Saha, D.; Dutta, S.; Baitalik, S. Synthesis, Characterization, Photophysical, and Anion-Binding Studies of Luminescent Heteroleptic Bis-Tridentate Ruthenium(II) Complexes Based on 2,6-Bis(Benzimidazole-2-yl)Pyridine and 4′-Substituted 2,2′:6′,2′′ Terpyridine Derivatives. Inorg. Chem. 2010, 49, 5049–5062. [Google Scholar] [CrossRef]
- Spahni, W.; Calzagerri, G. Synthese vonpara-substituierten phenyl-terpyridin liganden. Helv. Chim. Acta 1984, 67, 450–454. [Google Scholar] [CrossRef]
- Laurent, F.; Plantalech, E.; Donnadieu, B.; Jiménez, A.; Hernández, F.; Martínez-Ripoll, M.; Biner, M.; Llobet, A. Synthesis, structure and redox properties of ruthenium complexes containing the tpm facial and the trpy meridional tridentate ligands. Polyhedron 1999, 18, 3321–3331. [Google Scholar] [CrossRef]
- Elsbernd, H.; Beattie, J.K. The NMR spectra of terpyridine and the bis-terpyridine complexes of cobalt(III) and iron(II). J. Inorg. Nucl. Chem. 1972, 34, 771–774. [Google Scholar] [CrossRef]
- Pazderski, L.; Pawlak, T.; Sitkowski, J.; Kozerski, L.; Szlyk, E. 1H, 13C, 15N NMR coordination shifts in Fe(II), Ru(II) and Os(II) cationic complexes with 2,2′:6′,2″-terpyridine. Magn. Reson. Chem. 2011, 49, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.L.; Crosby, G.A. Charge-transfer luminescence from ruthenium(II) complexes containing tridentate ligands. Chem. Phys. Lett. 1981, 79, 169–173. [Google Scholar] [CrossRef]
- Jain, N.; Mary, A.; Manjunath, V.; Sakla, R.; Devan, R.S.; Jose, D.A.; Naziruddin, A.R. Ruthenium (II) Complexes Bearing Heteroleptic Terpyridine Ligands: Synthesis, Photophysics and Solar Energy Conversion. Eur. J. Inorg. Chem. 2021, 2021, 5014–5023. [Google Scholar] [CrossRef]
- Maestri, M.; Armaroli, N.; Balzani, V.; Constable, E.C.; Thompson, A.M.W.C. Complexes of the Ruthenium(II)-2,2′:6′,2″ -Terpyridine Family. Effect of Electron-Accepting and -Donating Substituents on the Photophysical and Electrochemical Properties. Inorg. Chem. 1995, 34, 2759–2767. [Google Scholar] [CrossRef]
- Zhang, R.; Yu, X.; Ye, Z.; Wang, G.; Zhang, W.; Yuan, J. Turn-on Luminescent Probe for Cysteine/Homocysteine Based on a Ruthenium(II) Complex. Inorg. Chem. 2010, 49, 7898–7903. [Google Scholar] [CrossRef]
- Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; von Zelewsky, A. Ru(II) polypyridine complexes: Photophysics, photochemistry, eletrochemistry, and chemiluminescence. Coord. Chem. Rev. 1988, 84, 85–277. [Google Scholar] [CrossRef]
- Meyer, T.J. Photochemistry of metal coordination complexes: Metal to ligand charge transfer excited states. Pure Appl. Chem. 1986, 58, 1193–1206. [Google Scholar] [CrossRef]
Absorption [298 K] | Excitation 298 K | Emission 298 K | |||||
---|---|---|---|---|---|---|---|
λmax [nm], (ε × 103 M−1cm−1) | Solid λexc [nm] | Solution λexc [nm] | Solid λem [nm] | Q (%) | Solution λem [nm] | Q (%) | |
(1) | 251 (23.5), 277 (28.0), 306 sh | - | - | - | - | - | - |
(4) | 286 (33.7), 308 (46.5), 487 (15.5) | - | - | - | - | - | - |
(5) | 284 (56.8), 310 (54.0), 489 (19.7) | - | - | - | - | - | - |
(6) | 286 (50.8), 311 (51.6), 489 (19.8) | - | - | - | - | - | - |
(7) | 286 (51.2), 309 (53.2), 493 (20.5) | - | - | - | - | - | - |
(2) | 252 (19.6), 281 (23.0), 311 sh | 350 | 280 | 404, 505 | 0.75 | 355 | 0.97 |
(8) | 286 (30.0), 311 (39.3), 488 (15.1) | 466 | 488 | 502, 521, 575 | 1.20 | 637 | 0.95 |
(9) | 287 (28.4), 313 (36.3), 490 (15.1) | 466 | 488 | 503, 520, 575 | 0.22 | 646 | 0.11 |
(10) | 289 (33.9), 310 (36.0), 489 (14.2) | 470 | 494 | 501, 521, 574 | 0.87 | 648 | 0.76 |
(11) | 288 (21.6), 305 (20.2), 491 (9.2) | 470 | 493 | 500, 522, 575 | 3.32 | 645 | 1.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ypsilantis, K.; Garypidou, A.; Gikas, A.; Kiapekos, A.; Plakatouras, J.C.; Garoufis, A. A New Unnatural Amino Acid Derived from the Modification of 4′-(p-tolyl)-2,2′:6′,2″-terpyridine and Its Mixed-Ligand Complexes with Ruthenium: Synthesis, Characterization, and Photophysical Properties. Chemistry 2023, 5, 151-163. https://doi.org/10.3390/chemistry5010012
Ypsilantis K, Garypidou A, Gikas A, Kiapekos A, Plakatouras JC, Garoufis A. A New Unnatural Amino Acid Derived from the Modification of 4′-(p-tolyl)-2,2′:6′,2″-terpyridine and Its Mixed-Ligand Complexes with Ruthenium: Synthesis, Characterization, and Photophysical Properties. Chemistry. 2023; 5(1):151-163. https://doi.org/10.3390/chemistry5010012
Chicago/Turabian StyleYpsilantis, Konstantinos, Antonia Garypidou, Andreas Gikas, Alexandros Kiapekos, John C. Plakatouras, and Achilleas Garoufis. 2023. "A New Unnatural Amino Acid Derived from the Modification of 4′-(p-tolyl)-2,2′:6′,2″-terpyridine and Its Mixed-Ligand Complexes with Ruthenium: Synthesis, Characterization, and Photophysical Properties" Chemistry 5, no. 1: 151-163. https://doi.org/10.3390/chemistry5010012
APA StyleYpsilantis, K., Garypidou, A., Gikas, A., Kiapekos, A., Plakatouras, J. C., & Garoufis, A. (2023). A New Unnatural Amino Acid Derived from the Modification of 4′-(p-tolyl)-2,2′:6′,2″-terpyridine and Its Mixed-Ligand Complexes with Ruthenium: Synthesis, Characterization, and Photophysical Properties. Chemistry, 5(1), 151-163. https://doi.org/10.3390/chemistry5010012