Environmental Applications of Zeolites: Hydrophobic Sn-BEA as a Selective Gas Sensor for Exhaust Fumes
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Physicochemical Characterization of Zeolite Samples
3.2. Detection of CO, CO2, NO, NO2 by Sn-BEA and DeAl-BEA Zeolite-Based Sensors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO-OEHT. WHO AIR Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide; WHO: Geneva, Switzerland, 2006.
- European Environment Agency (EEA). Air Quality in Europe—2020 Report; EEA: Copenhagen, Denmark, 2020. [Google Scholar]
- Sassykova, L.R.; Aubakirov, Y.A.; Sendilvelan, S.; Tashmukhambetova, Z.K.; Faizullaeva, M.F.; Bhaskar, K.; Batyrbayeva, A.A.; Ryskaliyeva, R.G.; Tyussyupova, B.B.; Zhakupova, A.A.; et al. The Main Components of Vehicle Exhaust Gases and Their Effective Catalytic Neutralization. Orient. J. Chem. 2019, 35, 110–127. [Google Scholar] [CrossRef] [Green Version]
- Department for Environment Food and Rural Affairs. What Are the Causes of Air Pollution Pollutant Description and Main UK Sources Potential Effects on Health/Environment Particulate. 2011. Available online: https://uk-air.defra.gov.uk/assets/documents/What_are_the_causes_of_Air_Pollution.pdf (accessed on 17 January 2023).
- Wadhwani, P.; Yadav, S. Gas Sensors Market Size & Share—Global Forecasts 2026; GMI Pulse: Selbyville, DE, USA, 2020. [Google Scholar]
- Fergus, J.W. Materials for high temperature electrochemical NOx gas sensors. Sens. Actuators B Chem. 2007, 121, 652–663. [Google Scholar] [CrossRef]
- Park, C.O.; Fergus, J.W.; Miura, N.; Park, J.; Choi, A. Solid-state electrochemical gas sensors. Ionics 2009, 15, 261–284. [Google Scholar] [CrossRef]
- Gardon, M.; Guilemany, J.M. A review on fabrication, sensing mechanisms and performance of metal oxide gas sensors. J. Mater. Sci. Mater. Electron. 2013, 24, 1410–1421. [Google Scholar] [CrossRef]
- Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal oxide gas sensors: Sensitivity and influencing factors. Sensors 2010, 10, 2088–2106. [Google Scholar] [CrossRef] [Green Version]
- Dey, A. Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2018, 229, 206–217. [Google Scholar] [CrossRef]
- Dinh, T.-V.; Choi, I.-Y.; Son, Y.-S.; Kim, J.-C. A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction. Sens. Actuators B 2016, 231, 529–538. [Google Scholar] [CrossRef]
- Cejka, J.; van Bekkum, H.; Corma, A.; Schuth, F. (Eds.) Introduction to Zeolite Science and Practice; Elsevier Science: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Talapaneni, S.N.; Grand, J.; Thomas, S.; Ahmad, H.A.; Mintova, S. Nanosized Sn-MFI zeolite for selective detection of exhaust gases. Mater. Des. 2016, 99, 574–580. [Google Scholar] [CrossRef]
- Xu, X.; Wang, J.; Long, Y. Zeolite-based Materials for Gas Sensors. Sensors 2006, 6, 1751–1764. [Google Scholar] [CrossRef] [Green Version]
- Sahner, K.; Hagen, G.; Schönauer, D.; Reiß, S.; Moos, R. Zeolites—Versatile materials for gas sensors. Solid State Ionics 2008, 179, 2416–2423. [Google Scholar] [CrossRef]
- Yang, P.; Ye, X.; Lau, C.; Li, Z.; Liu, X.; Lu, J. Design of Efficient Zeolite Sensor Materials for n-Hexane. Anal. Chem. 2007, 79, 1425–1432. [Google Scholar] [CrossRef]
- Corma, A.; Camblor, M.A.; Esteve, P.; Martínez, A.; Pérez-Pariente, J. Activity of Ti-Beta Catalyst for the Selective Oxidation of Alkenes and Alkanes. J. Catal. 1994, 145, 151–158. [Google Scholar] [CrossRef]
- Zhou, W.; Sun, P.; Navrotsky, A.; Kim, S.H.; Hong, S.B. Formation and dehydration enthalpies of gallosilicate materials with different framework topologies and Ga contents. Microporous Mesoporous Mater. 2009, 121, 200–207. [Google Scholar] [CrossRef]
- Bui, L.; Luo, H.; Gunther, W.R.; Román-Leshkov, Y. Domino Reaction Catalyzed by Zeolites with Brønsted and Lewis Acid Sites for the Production of γ-Valerolactone from Furfural. Angew. Chem. Int. Ed. 2013, 52, 8022–8025. [Google Scholar] [CrossRef]
- Luo, H.Y.; Consoli, D.F.; Gunther, W.R.; Román-Leshkov, Y. Investigation of the reaction kinetics of isolated Lewis acid sites in Beta zeolites for the Meerwein–Ponndorf–Verley reduction of methyl levulinate to γ-valerolactone. J. Catal. 2014, 320, 198–207. [Google Scholar] [CrossRef] [Green Version]
- Lewis, J.D.; Van de Vyver, S.; Román-Leshkov, Y. Acid–Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization. Angew. Chem. Int. Ed. 2015, 54, 9835–9838. [Google Scholar] [CrossRef] [PubMed]
- Corma, A.; Nemeth, L.T.; Renz, M.; Valencia, S. Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer-Villiger oxidations. Nature 2001, 412, 423–425. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.J.; Gounder, R.; Bhawe, Y.; Orazov, M.; Bermejo-Deval, R.; Davis, M.E. Solid State NMR Characterization of Sn-Beta Zeolites that Catalyze Glucose Isomerization and Epimerization. Top. Catal. 2015, 58, 435–440. [Google Scholar] [CrossRef]
- Bermejo-De Val, R.; Assary, R.S.; Nikolla, E.; Moliner, M.; Roman-Leshkov, Y.; Hwang, S.-J.; Palsdottir, A.; Silverman, D.; Lobo, R.F.; Curtiss, L.A.; et al. Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites. Proc. Natl. Acad. Sci. USA 2012, 109, 9727–9732. [Google Scholar] [CrossRef] [Green Version]
- Moliner, M.; Román-Leshkov, Y.; Davis, M.E. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. Proc. Natl. Acad. Sci. USA 2010, 107, 6164–6168. [Google Scholar] [CrossRef] [Green Version]
- Roman-Leshkov, Y.; Moliner, M.; Labinger, J.A.; Davis, M.E. Mechanism of glucose isomerization using a solid lewis acid catalyst in water. Angew. Chem. Int. Ed. 2010, 49, 8954–8957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taarning, E.; Saravanamurugan, S.; Holm, M.S.; Xiong, J.; West, R.M.; Christensen, C.H. Zeolite-Catalyzed Isomerization of Triose Sugars. ChemSusChem 2009, 2, 625–627. [Google Scholar] [CrossRef]
- Dijkmans, J.; Gabriëls, D.; Dusselier, M.; de Clippel, F.; Vanelderen, P.; Houthoofd, K.; Malfliet, A.; Pontikes, Y.; Sels, B.F. Productive sugar isomerization with highly active Sn in dealuminated β zeolites. Green Chem. 2013, 15, 2777–2785. [Google Scholar] [CrossRef]
- Zhu, Z.; Xu, H.; Jiang, J.; Liu, X.; Ding, J.; Wu, P. Postsynthesis of FAU-type stannosilicate as efficient heterogeneous catalyst for Baeyer-Villiger oxidation. Appl. Catal. A Gen. 2016, 519, 155–164. [Google Scholar] [CrossRef]
- Harris, J.W.; Liao, W.-C.; Di Iorio, J.R.; Henry, A.M.; Ong, T.-C.; Comas-Vives, A.; Copéret, C.C.; Gounder, R.; Davidson, C.D. Molecular Structure and Confining Environment of Sn Sites in Single-Site Chabazite Zeolites. Chem. Mater. 2017, 29, 8824–8837. [Google Scholar] [CrossRef]
- Skeels, G.W.; Flanigen, E.M. Zeolite Chemistry VII-Framework Substitution for Aluminum in Zeolites VIA Secondary Synthesis Treatment. Stud. Surf. Sci. Catal. 1989, 49, 331–344. [Google Scholar]
- Gunther, W.R.; Wang, Y.; Ji, Y.; Michaelis, V.K.; Hunt, S.T.; Griffin, R.G.; Román-Leshkov, Y. Sn-Beta zeolites with borate salts catalyse the epimerization of carbohydrates via an intramolecular carbon shift. Nat. Commun. 2012, 3, 1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yakimov, A.V.; Kolyagin, Y.G.; Tolborg, S.; Vennestrøm, P.N.R.; Ivanova, I.I. Accelerated synthesis of Sn-BEA in fluoride media: Effect of H2O content in the gel. New J. Chem. 2016, 40, 4367–4374. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-C.; Wang, Z.; Dornath, P.; Cho, H.J.; Fan, W. Rapid synthesis of Sn-Beta for the isomerization of cellulosic sugars. RSC Adv. 2012, 2, 10475–10477. [Google Scholar] [CrossRef]
- Harris, J.W.; Cordon, M.J.; Di Iorio, J.R.; Vega-Vila, J.C.; Ribeiro, F.H.; Gounder, R. Titration and quantification of open and closed Lewis acid sites in Sn-Beta zeolites that catalyze glucose isomerization. J. Catal. 2016, 335, 141–154. [Google Scholar] [CrossRef]
- Boronat, M.; Concepción, P.; Corma, A.; Renz, M.; Valencia, S. Determination of the catalytically active oxidation Lewis acid sites in Sn-beta zeolites, and their optimisation by the combination of theoretical and experimental studies. J. Catal. 2005, 234, 111–118. [Google Scholar] [CrossRef]
- Sushkevich, V.L.; Ivanova, I.I.; Yakimov, A.V. Revisiting Acidity of SnBEA Catalysts by Combined Application of FTIR Spectroscopy of Different Probe Molecules. J. Phys. Chem. C 2017, 121, 11437–11447. [Google Scholar] [CrossRef]
- Lewis, J.D.; Ha, M.; Luo, H.; Faucher, A.; Michaelis, V.K.; Román-Leshkov, Y. Distinguishing Active Site Identity in Sn-Beta Zeolites Using 31P MAS NMR of Adsorbed Trimethylphosphine Oxide. ACS Catal. 2018, 8, 3076–3086. [Google Scholar] [CrossRef]
- Josephson, T.R.; Jenness, G.R.; Vlachos, D.G.; Caratzoulas, S. Distribution of open sites in Sn-Beta zeolite. Microporous Mesoporous Mater. 2017, 245, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Freitas, C.; Barrow, N.; Zholobenko, V. Accessibility and Location of Acid Sites in Zeolites as Probed by Fourier Transform Infrared Spectroscopy and Magic Angle Spinning Nuclear Magnetic Resonance. Johns. Matthey Technol. Rev. 2018, 62, 279–290. [Google Scholar] [CrossRef]
- Zholobenko, V.; Freitas, C.; Jendrlin, M.; Bazin, P.; Travert, A.; Thibault-Starzyk, F. Probing the acid sites of zeolites with pyridine: Quantitative AGIR measurements of the molar absorption coefficients. J. Catal. 2020, 385, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Kobler, J.; Abrevaya, H.; Mintova, S.; Bein, T. High-Silica Zeolite-β: From Stable Colloidal Suspensions to Thin Films. J. Phys. Chem. C 2008, 112, 14274–14280. [Google Scholar] [CrossRef]
- Sushkevich, V.L.; Kots, P.A.; Kolyagin, Y.G.; Yakimov, A.V.; Marikutsa, A.V.; Ivanova, I.I. Origin of Water-Induced Brønsted Acid Sites in Sn-BEA Zeolites. J. Phys. Chem. C 2019, 123, 5540–5548. [Google Scholar] [CrossRef]
- Van de Vyver, S.; Odermatt, C.; Romero, K.; Prasomsri, T.; Román-Leshkov, Y. Solid Lewis Acids Catalyze the Carbon–Carbon Coupling between Carbohydrates and Formaldehyde. ACS Catal. 2015, 5, 972–977. [Google Scholar] [CrossRef]
- Pacheco, J.J.; Davis, M.E. Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural. Proc. Natl. Acad. Sci. USA 2014, 111, 8363–8367. [Google Scholar] [CrossRef] [Green Version]
- Holm, M.S.; Pagán-Torres, Y.J.; Saravanamurugan, S.; Riisager, A.; Dumesic, J.A.; Taarning, E. Sn-Beta catalysed conversion of hemicellulosic sugars. Green Chem. 2012, 14, 702–706. [Google Scholar] [CrossRef]
- Bermejo-Deval, R.; Gounder, R.; Davis, M.E. Framework and Extraframework Tin Sites in Zeolite Beta React Glucose Differently. ACS Catal. 2012, 2, 2705–2713. [Google Scholar] [CrossRef] [Green Version]
- Hammond, C.; Conrad, S.; Hermans, I. Simple and Scalable Preparation of Highly Active Lewis Acidic Sn-β. Angew. Chem. Int. Ed. 2012, 51, 11736–11739. [Google Scholar] [CrossRef] [PubMed]
- Treacy, M.M.J.; Higgins, J.B. (Eds.) Collection of Simulated XRD Powder Patterns for Zeolites; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Al-Ani, A.; Haslam, J.J.C.; Mordvinova, N.E.; Lebedev, O.I.; Vicente, A.; Fernandez, C.; Zholobenko, V. Synthesis of nanostructured catalysts by surfactantlating of large-pore zeolites. Nanoscale Adv. 2019, 1, 2029–2039. [Google Scholar] [CrossRef] [Green Version]
- Protsak, I.S.; Morozov, Y.M.; Dong, W.; Le, Z.; Zhang, D.; Henderson, I.M. A 29Si, 1H, and 13C Solid-State NMR Study on the Surface Species of Various Depolymerized Organosiloxanes at Silica Surface. Nanoscale Res. Lett. 2019, 14, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubray, F.; Moldovan, S.; Kouvatas, C.; Grand, J.; Aquino, C.; Barrier, N.; Gilson, J.-P.; Nesterenko, N.; Minoux, D.; Mintova, S. Direct Evidence for Single Molybdenum Atoms Incorporated in the Framework of MFI Zeolite Nanocrystals. J. Am. Chem. Soc. 2019, 141, 8689–8693. [Google Scholar] [CrossRef]
- Zheng, A.; Liu, S.-B.; Deng, F. 31P NMR Chemical Shifts of Phosphorus Probes as Reliable and Practical Acidity Scales for Solid and Liquid Catalysts. Chem. Rev. 2017, 117, 12475–12531. [Google Scholar] [CrossRef]
- Ohlin, L.; Berezovsky, V.; Öberg, S.; Farzaneh, A.; Holmgren, A.; Grahn, M. Effect of Water on the Adsorption of Methane and Carbon Dioxide in Zeolite Na-ZSM-5 Studied Using in Situ ATR-FTIR Spectroscopy. J. Phys. Chem. C 2016, 120, 29144–29152. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.-M.; Arai, T.; Kumagai, M. Cooperative and Competitive Adsorption Mechanism of NO2, NO, and H2O on H-Type Mordenite. Ind. Eng. Chem. Res. 2001, 40, 1864–1871. [Google Scholar] [CrossRef]
- Ohlin, L.; Bazin, P.; Frédé, F.; Thibault-Starzyk, F.; Hedlund, J.; Grahn, M. Adsorption of CO2, CH4, and H2O in Zeolite ZSM-5 Studied Using In Situ ATR-FTIR Spectroscopy. J. Phys. Chem. C 2013, 117, 16972–16982. [Google Scholar] [CrossRef]
- Szanyi, J.; Kwak, J.H.; Moline, R.A.; Peden, C.H.F. The adsorption of NO2 and the NO+O2 reaction on Na-Y, FAU: An in situ FTIR investigation. Phys. Chem. Chem. Phys. 2003, 5, 4045–4051. [Google Scholar] [CrossRef]
- Szanyi, J.; Kwak, J.H.; Peden, C.H.F. The Effect of Water on the Adsorption of No2 in Na- and Ba-Y, FAU Zeolites: A combined FTIR and TPD Investigation. J. Phys. Chem. B 2004, 108, 3746–3753. [Google Scholar] [CrossRef]
- Hadjiivanov, K.I. Identification of neutral and charged NxOy surface species by IR spectroscopy. Catal. Rev. Sci. Eng. 2000, 42, 71–144. [Google Scholar] [CrossRef]
- Santhosh Kumar, M.; Schwidder, M.; Grunert, W.; Bentrup, U.; Brückner, A. Selective reduction of NO with Fe-ZSM-5 catalysts of low Fe content: Part II. Assessing the function of different Fe sites by spectroscopic in situ studies. J. Catal. 2006, 239, 173–186. [Google Scholar] [CrossRef]
- Brosius, R.; Bazin, P.; Thibault-Starzyk, F.; Martens, J.A. Operando FTIR study of reaction pathways of selective catalytic reduction of NOx with decane in the presence of water on iron-exchanged MFI-type zeolite. J. Catal. 2005, 234, 191–198. [Google Scholar] [CrossRef]
- Ahrens, M.; Marie, O.; Bazin, P.; Daturi, M. Fe-H-BEA and Fe-H-ZSM-5 for NO2 removal from ambient air—A detailed in situ and operando FTIR study revealing an unexpected positive water-effect. J. Catal. 2010, 271, 1–11. [Google Scholar] [CrossRef]
BEA | DeAl-BEA | Sn-BEA | |
---|---|---|---|
Si/Al ratio | 19.2 | 497 | 1541 |
Si/Sn ratio | - | - | 64 |
w (H2O) (%) | 16 | 14 | 1 |
Particle size (μm) | 0.5–2 | 0.5–2 | 0.5–2 |
N2 ads-des (m2/g) | 640 | 572 | 504 |
BAS (μmol/g) | 395 | 16 | 3 |
LAS (μmol/g) | 106 | 6 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jendrlin, M.; Grand, J.; Lakiss, L.; Dubray, F.; Bazin, P.; El Fallah, J.; Mintova, S.; Zholobenko, V. Environmental Applications of Zeolites: Hydrophobic Sn-BEA as a Selective Gas Sensor for Exhaust Fumes. Chemistry 2023, 5, 334-347. https://doi.org/10.3390/chemistry5010025
Jendrlin M, Grand J, Lakiss L, Dubray F, Bazin P, El Fallah J, Mintova S, Zholobenko V. Environmental Applications of Zeolites: Hydrophobic Sn-BEA as a Selective Gas Sensor for Exhaust Fumes. Chemistry. 2023; 5(1):334-347. https://doi.org/10.3390/chemistry5010025
Chicago/Turabian StyleJendrlin, Martin, Julien Grand, Louwanda Lakiss, Florent Dubray, Philippe Bazin, Jaafar El Fallah, Svetlana Mintova, and Vladimir Zholobenko. 2023. "Environmental Applications of Zeolites: Hydrophobic Sn-BEA as a Selective Gas Sensor for Exhaust Fumes" Chemistry 5, no. 1: 334-347. https://doi.org/10.3390/chemistry5010025
APA StyleJendrlin, M., Grand, J., Lakiss, L., Dubray, F., Bazin, P., El Fallah, J., Mintova, S., & Zholobenko, V. (2023). Environmental Applications of Zeolites: Hydrophobic Sn-BEA as a Selective Gas Sensor for Exhaust Fumes. Chemistry, 5(1), 334-347. https://doi.org/10.3390/chemistry5010025