The Anion Impact on Dimensionality of Cadmium(II) Complexes with Nicotinamide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Physical Measurements
2.2. Syntheses of the Compounds
2.2.1. Synthesis of [Cd(CH3COO)2(nia)2]2 (1)
2.2.2. Synthesis of {[Cd(nia)4](ClO4)2}n (2)
2.2.3. Synthesis of [Cd(H2O)3(nia)3](ClO4)2·nia (3)
2.3. X-ray Crystallographic Analysis
3. Results
3.1. Synthesis
3.2. Crystal Structures
3.3. IR Spectra
3.4. Thermal Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allendorf, M.D.; Bauer, C.A.; Bhakta, R.K.; Houk, R.J.T. Luminescent metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1330–1352. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent Functional Metal–Organic Frameworks. Chem. Rev. 2012, 112, 1126–1162. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.-L.; Chen, X.-M. Recent Advances in Luminescent Monomeric, Multinuclear, and Polymeric Zn(II) and Cd(II) Coordination Complexes. Aust. J. Chem. 2004, 57, 703–712. [Google Scholar] [CrossRef]
- Cepeda, J.; Rodríguez-Diéguez, A. Tuning the luminescence performance of metal–organic frameworks based on d10 metal ions: From an inherent versatile behaviour to their response to external stimuli. CrystEngComm 2016, 18, 8556–8573. [Google Scholar] [CrossRef]
- Chisca, D.; Croitor, L.; Petuhov, O.; Kulikova, O.V.; Volodina, G.F.; Coropceanu, E.B.; Masunov, A.E.; Fonari, M.S. Tuning structures and emissive properties in a series of Zn(II) and Cd(II) coordination polymers containing dicarboxylic acids and nicotinamide pillars. CrystEngComm 2018, 20, 432–447. [Google Scholar] [CrossRef]
- Mishra, A.; Gupta, R. Supramolecular architectures with pyridine-amide based ligands: Discrete molecular assemblies and their applications. Dalton Trans. 2014, 43, 7668–7682. [Google Scholar] [CrossRef]
- Mukherjee, A. Building upon supramolecular synthons: Some aspects of crystal engineering. Cryst. Growth Des. 2015, 15, 3076–3085. [Google Scholar] [CrossRef]
- Aakeröy, C.B.; Scott, B.M.T.; Desper, J. How robust is the hydrogen-bonded amide ‘ladder’ motif? New J. Chem. 2007, 31, 2044–2051. [Google Scholar] [CrossRef]
- Bera, J.K.; Vo, T.-T.; Walton, R.A.; Dunbar, K.R. Hydrogen-bonding as a tool for building one-dimensional structures based on dimetal building blocks. Polyhedron 2003, 22, 3009–3014. [Google Scholar] [CrossRef]
- Aakeröy, C.B. Supramolecular assembly of low-dimensional silver(I) architectures via amide–amide hydrogen bonds. Chem. Comm. 1998, 1067–1068. [Google Scholar] [CrossRef]
- Soldin, Ž.; Kukovec, B.-M.; Debač, T.; Đaković, M.; Popović, Z. Anion-assisted supramolecular assemblies of zinc(II) complexes with isonicotinamide. Heliyon 2022, 8, e09943. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Yang, D.; Yang, X.-J.; Wu, B. Anion coordination chemistry: From recognition to supramolecular assembly. Coord. Chem. Rev. 2019, 378, 415–444. [Google Scholar] [CrossRef]
- Đaković, M.; Jaźwiński, J.; Popović, Z. Impact of coordinated pseudohalide ions and picolinamide on supramolecular synthons in selected zinc and cadmium complexes. Acta Chim. Slov. 2015, 62, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Nezhadali Baghan, Z.; Salimi, A.; Eshtiagh-Hosseini, H.; Olive, A.G. Hydrogen-bonded 3D network of d10-metal halide coordination polymer containing N-(3-pyridinyl) nicotinamide: Influence of ligand conformation, halide anions and solvent. CrystEngComm 2019, 21, 2691–2701. [Google Scholar] [CrossRef]
- CrysAlisPro; Oxford Diffraction Ltd.: Yarnton, Oxfordshire, UK, 2010.
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. [Google Scholar]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. 2016, B72, 171–179. [Google Scholar] [CrossRef]
- Bozkurt, N.; Dilek, N.; Çaylak Delibas, N.; Necefoglu, H.; Hökelek, T. Di-μ-nicotinamide-κ2N1:O:κ2O:N1-bis[aquabis(3-chloro benzoato- κ2O,O’)cadmium]. Acta Crystallogr. 2013, E69, m389–m390. [Google Scholar]
- Öztürkkan Özbeka, F.E.; Sertçelika, M.; Yüksekb, M.; Elmalıc, A.; Şahind, E. The superiority of the classical synthesis compared to the hydrothermal synthesis upon the structural, optical absorption and fluorescent properties of new Cd(II) 3-fluorobenzoate complexes with Pyridine-3-carboxamide/Pyridine-3-carboxylate. Inorg. Chim. Acta 2020, 509, 119694. [Google Scholar] [CrossRef]
- Cakir, S.; Naumov, P.; Bulut, I.; Bicer, E.; Cakir, O.; Jovanovski, G.; Razak, I.A.; Chantrapromma, S.; Fun, H.-K.; Ng, S.W. Di aquabis(nicotinamide) bis(o-sulfobenzimidato-N) cadmium(II). Acta Crystallogr. 2001, E57, m431–m432. [Google Scholar]
- Dincel, Ö.; Tercan, B.; Çimen, E.; Necefoğlu, H.; Hökelek, T. Bis(μ-4-methyl benzoato)-κ3O,O′:O;κ3O:O,O′-bis[aqua(4-methyl benzoato-κ2O,O′)(nicotinamide-κN1)cadmium]. Acta Crystallogr. 2012, E68, m1510–m1511. [Google Scholar]
- Zhang, K.-L.; Yang, B.; Lin, J.-G.; Ng, S.W. trans,trans,trans-Diaquabis(nicotinamide κN)bis (2-nitro benzoato κO)cadmium(II) dihydrate. Acta Crystallogr. 2009, E65, m292. [Google Scholar]
- Hökelek, T.; Özkaya, S.; Necefoğlu, H. Crystal structure and Hirshfeld surface analysis of aquabis(nicotinamide-κN1)bis(2,4,6-tri methyl benzoato-κ2O,O’)cadmium(II). Acta Crystallogr. 2018, E74, 246–251. [Google Scholar]
- Deng, Z.-P.; Gao, S.; Ng, S.W. Tetraaquabis(nicotinamide-κN)cadmium(II) bis (4-formyl benzoate). Acta Crystallogr. 2007, E63, m2323. [Google Scholar]
- Çaylak Delibas, N.; Necefoglu, H.; Hökelek, T. Diaquabis(2-hydroxy benzoato- κO1)bis (nicotinamide-κN1)cadmium-diaquabis(2-hydroxy benzoato-κ2O1,O1’)(nicotinamide-κN)cadmium-water (1/2/4). Acta Crystallogr. 2013, E69, m191–m192. [Google Scholar]
- Yang, G.; Zhu, H.-G.; Liang, B.-H.; Chen, X.-M. Syntheses and crystal structures of four metal–organic co-ordination networks constructed from cadmium(II) thiocyanate and nicotinic acid derivatives with hydrogen bonds. J. Chem. Soc. Dalton Trans. 2001, 580–585. [Google Scholar] [CrossRef]
- Hökelek, T.; Süzen, Y.; Tercan, B.; Aybirdi, Ö.; Necefoglu, H. Bis[μ-4-(dimethyl amino) benzoato]-κ3O,O’:O;κ3O:O,O’-bis{aqua[4-(dimethyl amino) benzoato-κ2O,O’](nicotinamide-κN1)cadmium(II)}. Acta Crystallogr. 2010, E66, m782–m783. [Google Scholar]
- Li, C.; Chen, M.; Shao, C. trans-Tetraaquabis(nicotinamide-κN)cadmium(II) biphenyl-4,4’-disulfonate. Acta Crystallogr. 2008, E64, m424. [Google Scholar] [CrossRef] [PubMed]
- Hökelek, T.; Saglam, E.G.; Tercan, B.; Aybirdi, Ö.; Necefoglu, H. Bis[μ-4-(methyl amino) benzoato]-κ3O,O’:O; κ3O:O,O’-bis{aqua[4-(methyl amino) benzoato-κ2O,O’](nicotinamide-κN)cadmium(II)}. Acta Crystallogr. 2010, E66, m1559–m1560. [Google Scholar]
- Lian, Z.; Zhao, N.; Yang, F.; Liu, P. Crystal structure of trans-trans-trans-diaquabis(nicotinamide)-dinitratocadmium(II)–nicotinamide (1:2), Cd(H2O)2(C6H6N2O)2(NO3)2 · 2C6H6N2O. Z. Kristallogr. NCS 2011, 226, 289–290. [Google Scholar]
- Ramalingam, S.; Periandy, S.; Govindarajan, M.; Mohan, S. FT-IR and FT-Raman vibrational spectra and molecular structure investigation of nicotinamide: A combined experimental and theoretical study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2010, 75, 1552–1558. [Google Scholar] [CrossRef] [PubMed]
- Paşaoğlu, H.; Güven, S.; Heren, Z.; Büyükgüngör, O. Synthesis, spectroscopic and structural investigation of ZnI2(nicotinamide)2, ZnI2(isonicotinamide)2 and [Zn(H2O)2(picolinamide)2]I2. J. Mol. Struct. 2006, 794, 270–276. [Google Scholar] [CrossRef]
- Bayarı, S.; Ataç, A.; Yurdakul, Ş. Coordination behaviour of nicotinamide: An infrared spectroscopic study. J. Mol. Struct. 2003, 655, 163–170. [Google Scholar] [CrossRef]
- İde, S.; Ataç, A.; Yurdakul, Ş. Spectroscopic and structural studies on dichlorobis(nicotinamide)zinc(II). J. Mol. Struct. 2002, 605, 103–107. [Google Scholar] [CrossRef]
- Dziewulska-Kułaczkowska, A.; Mazur, L.; Ferenc, W. Thermal, spectroscopic and structural studies of zinc(II) complex with nicotinamide. J. Therm. Anal. Calorim. 2009, 96, 255–260. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 6th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; pp. 64–67, 86–88. [Google Scholar]
- Deacon, G.B.; Phillips, R.J. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord. Chem. Rev. 1980, 33, 227–250. [Google Scholar] [CrossRef]
Compound | 1 | 2 | 3 |
---|---|---|---|
Formula | C32H36Cd2N8O12 | C24H24CdCl2N8O12 | C24H30CdCl2N8O15 |
Mr | 949.51 | 799.81 | 853.86 |
Crystal system, space group | monoclinic, P21/n (No. 14) | monoclinic, P21/c (No. 14) | monoclinic, P21/n (No. 14) |
a (Å) | 11.2351(2) | 7.55240(10) | 7.4629(2) |
b (Å) | 14.8801(2) | 12.9826(2) | 24.0425(6) |
c (Å) | 12.5650(3) | 16.0880(2) | 18.6052(4) |
β (˚) | 103.108(2) | 92.2960(10) | 92.373(2) |
V (Å3) | 2045.88(7) | 1576.16(4) | 3335.41(14) |
Z | 2 | 2 | 4 |
Dcalc (g cm−3) | 1.541 | 1.685 | 1.700 |
μ (mm−1) | 1.104 | 0.936 | 0.896 |
R [I ≥ 2σ(I)] | 0.0485 | 0.0331 | 0.0344 |
wR [all data] | 0.1714 | 0.0956 | 0.1002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soldin, Ž.; Kukovec, B.-M.; Kovačić, M.; Đaković, M.; Popović, Z. The Anion Impact on Dimensionality of Cadmium(II) Complexes with Nicotinamide. Chemistry 2023, 5, 1357-1368. https://doi.org/10.3390/chemistry5020092
Soldin Ž, Kukovec B-M, Kovačić M, Đaković M, Popović Z. The Anion Impact on Dimensionality of Cadmium(II) Complexes with Nicotinamide. Chemistry. 2023; 5(2):1357-1368. https://doi.org/10.3390/chemistry5020092
Chicago/Turabian StyleSoldin, Željka, Boris-Marko Kukovec, Milica Kovačić, Marijana Đaković, and Zora Popović. 2023. "The Anion Impact on Dimensionality of Cadmium(II) Complexes with Nicotinamide" Chemistry 5, no. 2: 1357-1368. https://doi.org/10.3390/chemistry5020092
APA StyleSoldin, Ž., Kukovec, B. -M., Kovačić, M., Đaković, M., & Popović, Z. (2023). The Anion Impact on Dimensionality of Cadmium(II) Complexes with Nicotinamide. Chemistry, 5(2), 1357-1368. https://doi.org/10.3390/chemistry5020092