Exploring the Effect of Sn Addition to Supported Au Nanoparticles on Reducible/Non-Reducible Metal Oxides Supports for Alkane Oxidation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Catalysts Synthesis
2.3. Catalysts Characterization
2.4. Oxidation of Cyclohexane
3. Results and Discussion
3.1. Catalysis
3.1.1. Cyclohexane Oxidation in the Presence of Bare Supports
3.1.2. Cyclohexane Oxidation in the Presence of Monometallic Au-Supported and Sn-Supported Catalysts
3.1.3. Cyclohexane Oxidation in the Presence of AuSn-Supported Catalysts
3.2. Characterization
119Sn-Mössbauer Spectroscopy and TEM, STEM-EDS of AuSn Catalysts
4. Discussion of the Mechanism
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haruta, M.; Daté, M. Advances in the catalysis of Au nanoparticles. Appl. Catal. A Gen. 2001, 222, 427–437. [Google Scholar] [CrossRef]
- Zanella, R.; Giorgio, S.; Shin, C.-H.; Henry, C.R.; Louis, C. Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea. J. Catal. 2004, 222, 357–367. [Google Scholar] [CrossRef]
- Stucchi, M.; Meroni, D.; Safran, G.; Villa, A.; Bianchi, C.L.; Prati, L. Noble Metal Promoted TiO2 from Silver-Waste Valorisation: Synergism between Ag and Au. Catalysts 2022, 12, 235. [Google Scholar] [CrossRef]
- Jouve, A.; Stucchi, M.; Barlocco, I.; Evangelisti, C.; Somodic, F.; Villa, A. Carbon-Supported Au Nanoparticles: Catalytic Activity Ruled Out by Carbon Support. Top. Catal. 2018, 61, 1928–1938. [Google Scholar] [CrossRef]
- Stucchi, M.; Capelli, S.; Cattaneo, S.; Beck, A.; Evangelisti, C.; Prati, L. Synergistic Effect in Au-Cu Catalysts for Second-Generation Biomass Valorization. Catalysts 2020, 10, 332. [Google Scholar] [CrossRef]
- Cattaneo, S.; Stucchi, M.; Villa, A.; Prati, L. Gold Catalysts for the Selective Oxidation of Biomass-Derived Products. ChemCatChem 2019, 11, 309–323. [Google Scholar] [CrossRef]
- Carabineiro, S.A.C. Supported Gold Nanoparticles as Catalysts for the Oxidation of Alcohols and Alkanes. Front. Chem. 2019, 7, 702. [Google Scholar] [CrossRef]
- Nisa, R.U.; Mahmood, T.; Ludwig, R.; Ayub, K. Theoretical mechanistic investigation of zinc(II) catalyzed oxidation of alcohols to aldehydes and esters. RSC Adv. 2016, 6, 31876–31883. [Google Scholar] [CrossRef]
- Medina-Ramos, J.; Pupillo, R.C.; Keane, T.P.; DiMeglio, J.L.; Rosenthal, J. Efficient Conversion of CO2 to CO Using Tin and Other Inexpensive and Easily Prepared Post-Transition Metal Catalysts. J. Am. Chem. Soc. 2015, 137, 5021–5027. [Google Scholar] [CrossRef]
- Wang, Z.-L.; Li, C.; Yamauchi, Y. Nanostructured nonprecious metal catalysts for electrochemical reduction of carbon dioxide. Nano Today 2016, 11, 373–391. [Google Scholar] [CrossRef]
- Tayal, J.; Rawat, B.; Basu, S. Bi-metallic and tri-metallic Pt–Sn/C, Pt–Ir/C, Pt–Ir–Sn/C catalysts for electro-oxidation of ethanol in direct ethanol fuel cell. Int. J. Hydrogen Energy 2011, 36, 14884–14897. [Google Scholar] [CrossRef]
- Jacob, J.M.; Corradini, P.G.; Antolini, E.; Santos, N.A.; Perez, J. Electro-oxidation of ethanol on ternary Pt–Sn–Ce/C catalysts. Appl. Catal. B Environ. 2015, 165, 176–184. [Google Scholar] [CrossRef]
- Li, G.; Pickup, P.G. Decoration of carbon-supported Pt catalysts with Sn to promote electro-oxidation of ethanol. J. Power Sources 2007, 173, 121–129. [Google Scholar] [CrossRef]
- Bonincontro, D.; Lolli, A.; Storione, A.; Gasparotto, A.; Berti, B.; Zacchini, S.; Dimitratos, N.; Albonetti, S. Pt and Pt/Sn carbonyl clusters as precursors for the synthesis of supported metal catalysts for the base-free oxidation of HMF. Appl. Catal. A Gen. 2019, 588, 117279. [Google Scholar] [CrossRef]
- Pitzalis, E.; Psaro, R.; Evangelisti, C. From metal vapor to supported single atoms, clusters and nanoparticles: Recent advances to heterogeneous catalysts. Inorganica Chim. Acta 2022, 533, 120782. [Google Scholar] [CrossRef]
- Klabunde, K.J. Nanochemistry; Newnes: Oxford, UK, 2013. [Google Scholar]
- Goldman, A.S.; Goldberg, K.I. Organometallic C-H Bond Activation: An Introduction; American Chemical Society: Washington, DC, USA, 2004; pp. 1–43. [Google Scholar]
- Wang, B.; Jin, C.; Shao, S.; Yue, Y.; Zhang, Y.; Wang, S.; Chang, R.; Zhang, H.; Zhao, J.; Li, X. Electron-deficient Cu site catalyzed acetylene hydrochlorination. Green Energy Environ. 2022, 8, 1128–1140. [Google Scholar]
- Carabineiro, S.A.C.; Thompson, D.T. Catalytic Applications for Gold Nanotechnology BT—Nanocatalysis; Heiz, U., Landman, U., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 377–489. [Google Scholar]
- Lü, G.; Zhao, R.; Qian, G.; Qi, Y.; Wang, X.; Suo, J. A highly efficient catalyst Au/MCM-41 for selective oxidation cyclohexane using oxygen. Catal. Lett. 2004, 97, 115–118. [Google Scholar] [CrossRef]
- Matias, I.A.S.; Ribeiro, A.P.C.; Oliveira-Silva, R.P.; Prazeres, D.M.F.; Martins, L.M.D.R.S. Gold Nanotriangles as Selective Catalysts for Cyclohexanol and Cyclohexanone Production. Appl. Sci. 2018, 8, 2655. [Google Scholar] [CrossRef]
- Hutchings, G.J.; Carrettin, S.; Landon, P.; Edwards, J.K.; Enache, D.; Knight, D.W.; Xu, Y.-J.; Carley, A.F. New approaches to designing selective oxidation catalysts: Au/C a versatile catalyst. Top. Catal. 2006, 38, 223–230. [Google Scholar] [CrossRef]
- Vomeri, A.; Stucchi, M.; Villa, A.; Evangelisti, C.; Beck, A.; Prati, L. New insights for the catalytic oxidation of cyclohexane to K–A oil. J. Energy Chem. 2022, 70, 45–51. [Google Scholar] [CrossRef]
- Della Pina, C.; Falletta, E.; Rossi, M. Update on selective oxidation using gold. Chem. Soc. Rev. 2012, 41, 350–369. [Google Scholar] [CrossRef]
- Xu, L.-X.; He, C.-H.; Zhu, M.-Q.; Wu, K.-J.; Lai, Y.-L. Silica-Supported Gold Catalyst Modified by Doping with Titania for Cyclohexane Oxidation. Catal. Lett. 2007, 118, 248–253. [Google Scholar] [CrossRef]
- Hereijgers, B.P.C.; Weckhuysen, B.M. Aerobic oxidation of cyclohexane by gold-based catalysts: New mechanistic insight by thorough product analysis. J. Catal. 2010, 270, 16–25. [Google Scholar] [CrossRef]
- Conte, M.; Liu, X.; Murphy, D.M.; Whiston, K.; Hutchings, G.J. Cyclohexane oxidation using Au/MgO: An investigation of the reaction mechanism. Phys. Chem. Chem. Phys. 2012, 14, 16279–16285. [Google Scholar] [CrossRef]
- Maltanava, H.M.; Vrublevskaya, O.N.; Vorobyova, T.N. Electrochemical Deposition of Gold-Tin Alloy from Propyleneglycol Electrolyte. Met. Finish. 2013, 111, 28–34. [Google Scholar] [CrossRef]
- Lázár, K.; Matusek, K.; Mink, J.; Dobos, S.; Guczi, L.; Vizi-Orosz, A.; Markó, L.; Reiff, W.M. Spectroscopic and catalytic study on metal carbonyl clusters supported on Cab-O-Sil: I. Impregnation and decomposition of Fe3(CO)12. J. Catal. 1984, 87, 163–178. [Google Scholar] [CrossRef]
- Klencsár, Z.; Kuzmann, E.; Vértes, A. User-friendly software for Mössbauer spectrum analysis. J. Radioanal. Nucl. Chem. 1996, 210, 105–118. [Google Scholar] [CrossRef]
- Liu, X.; Conte, M.; He, Q.; Knight, D.W.; Murphy, D.M.; Taylor, S.H.; Whiston, K.; Kiely, C.J.; Hutchings, G.J. Catalytic Partial Oxidation of Cyclohexane by Bimetallic Ag/Pd Nanoparticles on Magnesium Oxide. Chem. Eur. J. 2017, 23, 11834–11842. [Google Scholar]
- Parham, S.; Chandren, S.; Wicaksono, D.H.B.; Bagherbaigi, S.; Lee, S.L.; Yuan, L.S.; Nur, H. Textile/Al2O3–TiO2 nanocomposite as an antimicrobial and radical scavenger wound dressing. RSC Adv. 2016, 6, 8188–8197. [Google Scholar] [CrossRef]
- Nakanishi, I.; Ohkubo, K.; Ogawa, Y.; Matsumoto, K.; Ozawa, T.; Fukuzumi, S. Aluminium ion-promoted radical-scavenging reaction of methylated hydroquinone derivatives. Org. Biomol. Chem. 2016, 14, 7956–7961. [Google Scholar] [CrossRef]
- Alidoust, S.; Zamani, M.; Jabbari, M. Adsorption of free radical TEMPO onto Al2O3 nanoparticles and evaluation of radical scavenging activity. Free Radic. Res. 2021, 55, 937–949. [Google Scholar]
- Zamani, M.; Moradi Delfani, A.; Jabbari, M. Scavenging performance and antioxidant activity of γ-alumina nanoparticles towards DPPH free radical: Spectroscopic and DFT-D studies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 201, 288–299. [Google Scholar] [PubMed]
- Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A.A. Heterojunction Photocatalysts. Adv. Mater. 2017, 29, 1601694. [Google Scholar]
- Tao, C.; Jia, Q.; Han, B.; Ma, Z. Tunable selectivity of radical generation over TiO2 for photocatalysis. Chem. Eng. Sci. 2020, 214, 115438. [Google Scholar]
- Harima, Y.; Fujita, T.; Kano, Y.; Imae, I.; Komaguchi, K.; Ooyama, Y.; Ohshita, J. Lewis-Acid Sites of TiO2 Surface for Adsorption of Organic Dye Having Pyridyl Group as Anchoring Unit. J. Phys. Chem. C 2013, 117, 16364–16370. [Google Scholar]
- Hermans, I.; Jacobs, P.A.; Peeters, J. To the core of autocatalysis in cyclohexane autoxidation. Chem. Eur. J. 2006, 12, 4229–4240. [Google Scholar]
- Gangwar, J.; Gupta, B.K.; Srivastava, A.K. Prospects of Emerging Engineered Oxide Nanomaterials and their Applications. Def. Sci. J. 2016, 66, 323–340. [Google Scholar]
- Sopiha, K.V.; Malyi, O.I.; Persson, C.; Wu, P. Chemistry of Oxygen Ionosorption on SnO2 Surfaces. ACS Appl. Mater. Interfaces 2021, 13, 33664–33676. [Google Scholar]
- Sadiq, M.; Ali, M.; Iqbal, R.; Saeed, K.; Khan, A.; Umar, M.N.; Rashid, H.U. Efficient Aerobic Oxidation of Cyclohexane to KA Oil Catalyzed by Pt-Sn supported on MWCNTs. J. Chem. Sci. 2015, 127, 1167–1172. [Google Scholar]
Au/Sn Molar Ratio | Metal Wt. (%) | Mean Particle Diameter(nm) (TEM) | |||
---|---|---|---|---|---|
Sample | Nominal | actual | nominal | actual | |
Au3Sn1/TiO2 | 3 | 2.91 | 3 | 3.29 | - |
Au3Sn1/Al2O3 | 3 | 2.74 | 3 | 3.30 | - |
Au1Sn2/TiO2 | 0.5 | 0.54 | 3 | 3.26 | 6.28 ± 3.11 |
Au1Sn2/Al2O3 | 0.5 | 0.50 | 3 | 3.35 | 7.24 ± 3.56 |
Entry | Cy–OH (mmol) | Cy=O (mmol) | K–A Oil (mmol) | K/A | |
---|---|---|---|---|---|
1 | No cat. | 0.99 | 1.72 | 2.70 | 1.74 |
2 | TiO2 | 0.53 | 0.52 | 1.05 | 0.98 |
3 | Au/TiO2 | 1.70 | 1.48 | 3.18 | 0.87 |
4 | Sn/TiO2 | 0.45 | 0.34 | 0.79 | 0.76 |
5 | Au3Sn1/TiO2 | 1.49 | 1.51 | 2.99 | 1.01 |
6 | Au1Sn2/TiO2 | 1.46 | 1.68 | 3.14 | 1.15 |
7 | Al2O3 | 0.40 | 0.25 | 0.65 | 0.63 |
8 | Au/Al2O3 | 1.92 | 1.74 | 3.66 | 0.90 |
9 | Sn/Al2O3 | 0.70 | 0.38 | 1.08 | 0.54 |
10 | Au3Sn1/Al2O3 | 1.08 | 1.07 | 2.15 | 0.99 |
11 | Au1Sn2/Al2O3 | 1.06 | 1.15 | 2.21 | 1.09 |
12 | Au/Al2O3 + Sn/Al2O3 | 1.28 | 0.79 | 2.07 | 0.62 |
Temp. | 300 K | 77 K | |||||||
---|---|---|---|---|---|---|---|---|---|
Support | Component | δ a | Δ b | FWHM c | Rel. Int. d | δ | Δ | FWHM | Rel. Int. |
mm s−1 | mm s−1 | mm s−1 | % | mm s−1 | mm s−1 | mm s−1 | % | ||
Al2O3 | Sn(IV)-(1) | −0.20 | 0.56 | 0.69 | 22.4 | −0.17 | 0.54 | 0.75 | 21.9 |
Sn(IV)-(2) | 0.08 | 0.62 | 0.90 | 72.5 | 0.12 | 0.65 | 0.97 | 73.7 | |
singlet | 1.84 | − | 2.35 | 5.1 | 2.08 | − | 1.91 | 4.4 | |
TiO2 | Sn(IV) | 0.00 | 0.60 | 0.93 | 94.3 | 0.02 | 0.61 | 0.98 | 86.2 |
singlet | 1.76 | − | 1.28 | 5.7 | 1.56 | − | 2.72 | 13.8 |
Time (min) | Cyclohexanol (mmol) | Cyclohexanone (mmol) |
---|---|---|
0 | 0 | 0 |
120 | 0.93 × 10−3 | 1.5 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stucchi, M.; Vomeri, A.; Stichleutner, S.; Lázár, K.; Pitzalis, E.; Evangelisti, C.; Prati, L. Exploring the Effect of Sn Addition to Supported Au Nanoparticles on Reducible/Non-Reducible Metal Oxides Supports for Alkane Oxidation. Chemistry 2023, 5, 1560-1576. https://doi.org/10.3390/chemistry5030107
Stucchi M, Vomeri A, Stichleutner S, Lázár K, Pitzalis E, Evangelisti C, Prati L. Exploring the Effect of Sn Addition to Supported Au Nanoparticles on Reducible/Non-Reducible Metal Oxides Supports for Alkane Oxidation. Chemistry. 2023; 5(3):1560-1576. https://doi.org/10.3390/chemistry5030107
Chicago/Turabian StyleStucchi, Marta, Alessandro Vomeri, Sándor Stichleutner, Károly Lázár, Emanuela Pitzalis, Claudio Evangelisti, and Laura Prati. 2023. "Exploring the Effect of Sn Addition to Supported Au Nanoparticles on Reducible/Non-Reducible Metal Oxides Supports for Alkane Oxidation" Chemistry 5, no. 3: 1560-1576. https://doi.org/10.3390/chemistry5030107
APA StyleStucchi, M., Vomeri, A., Stichleutner, S., Lázár, K., Pitzalis, E., Evangelisti, C., & Prati, L. (2023). Exploring the Effect of Sn Addition to Supported Au Nanoparticles on Reducible/Non-Reducible Metal Oxides Supports for Alkane Oxidation. Chemistry, 5(3), 1560-1576. https://doi.org/10.3390/chemistry5030107