Coupling 2-Aminopurine with DNA Copper Nanoparticles as a Rapid and Enzyme-Free System for Operating DNA Contrary Logic Pairs
Abstract
:1. Introduction
2. Discussion and Results
2.1. Experimental Section
2.1.1. Materials and Reagents
2.1.2. Synthesis of CuNPs and Characterization
2.1.3. Apparatus
2.1.4. Native Polyacrylamide Gel Electrophoresis (PAGE)
2.1.5. Operation of YES/NOT Gate
2.1.6. Operation of OR/NOR Gate
2.1.7. Ratiometric Fluorescent Detection of A25
2.2. Mechanism and Verification Experiments
2.2.1. Construction of YES/NOT Logic Pair
2.2.2. Operation of OR/NOR Logic Pair
2.2.3. Ratiometric Fluorescent Detection of Poly-A Strand
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Silva, A.P.; Gunaratne, H.Q.N.; McCoy, C.P. A molecular photoionic and gate based on fluorescent signaling. Nature 1993, 364, 42–44. [Google Scholar] [CrossRef]
- Feng, C.; Chen, T.S.; Mao, D.S.; Zhang, F.; Tian, B.; Zhu, X.L. Construction of a Ternary Complex Based DNA Logic Nanomachine for a Highly Accurate Imaging Analysis of Cancer Cells. ACS Sens. 2020, 5, 3116–3123. [Google Scholar] [CrossRef] [PubMed]
- Merkx, M.; Janssen, B.; van Rosmalen, M.; van Beek, L. Antibody Activation using DNA-Based Logic Gates. Protein Sci. 2015, 24, 35. [Google Scholar]
- Shin, T.H.; Choi, J.S.; Yun, S.; Kim, I.S.; Song, H.T.; Kim, Y.; Park, K.I.; Cheon, J. T-1 and T-2 Dual-Mode MRI Contrast Agent for Enhancing Accuracy by Engineered Nanomaterials. ACS Nano 2014, 8, 3393–3401. [Google Scholar] [CrossRef]
- Strack, G.; Ornatska, M.; Pita, M.; Katz, E. Biocomputing security system: Concatenated enzyme-based logic gates operating as a biomolecular keypad lock. J. Am. Chem. Soc. 2008, 130, 4234. [Google Scholar] [CrossRef]
- Mailloux, S.; Gerasimova, Y.V.; Guz, N.; Kolpashchikov, D.M.; Katz, E. Bridging the Two Worlds: A Universal Interface between Enzymatic and DNA Computing Systems. Angew. Chem. Int. Edit. 2015, 54, 6562–6566. [Google Scholar] [CrossRef]
- Prokup, A.; Deiters, A. Interfacing Synthetic DNA Logic Operations with Protein Outputs. Angew. Chem. Int. Edit. 2014, 53, 13192–13195. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.Q.; Wang, J.; Wang, E.K.; Dong, S.J. Propelling DNA Computing with Materials’ Power: Recent Advancements in Innovative DNA Logic Computing Systems and Smart Bio-Applications. Adv. Sci. 2020, 7, 25. [Google Scholar] [CrossRef]
- Jiao, K.; Au, B.; Guo, L.J.; Zhou, H.B.; Wang, F.; Zhang, X.L.; Shi, J.Y.; Li, Q.; Wang, L.H.; Li, J.; et al. Programming Switchable Transcription of Topologically Constrained DNA. J. Am. Chem. Soc. 2020, 142, 10739–10746. [Google Scholar] [CrossRef]
- Prokup, A.; Hemphill, J.; Deiters, A. DNA Computation: A Photochemically Controlled AND Gate. J. Am. Chem. Soc. 2012, 134, 3810–3815. [Google Scholar] [CrossRef]
- Wilkins, M.H.F.; Stokes, A.R.; Wilson, H.R. Molecular structure of deoxypentose nucleic acids. Nature 1953, 171, 738–740. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Ma, X.Y.; Zheng, X.D.; Ke, Y.G.; Chen, K.T.; Liu, D.S.; Lu, Z.H.; Yang, J.; Yan, H. Programmable allosteric DNA regulations for molecular networks and nanomachines. Sci. Adv. 2022, 8, eabl4589. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.M.; Chandrasekaran, A.R.; Li, Q.; Li, X.; Sha, R.J.; Seeman, N.C.; Mao, C.D. Post-Assembly Stabilization of Rationally Designed DNA Crystals. Angew. Chem. Int. Edit. 2015, 54, 9936–9939. [Google Scholar] [CrossRef] [PubMed]
- Goodman, R.P.; Schaap, I.A.T.; Tardin, C.F.; Erben, C.M.; Berry, R.M.; Schmidt, C.F.; Turberfield, A.J. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 2005, 310, 1661–1665. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Niemeyer, C.M. From DNA Nanotechnology to Material Systems Engineering. Adv. Mater. 2019, 31, 1806294. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Zhao, J.M.; Liu, L.F.; Jonchhe, S.; Rizzuto, F.J.; Mandal, S.; He, H.W.; Wei, S.S.; Sleiman, H.F.; Mao, H.B.; et al. A poly(thymine)-melamine duplex for the assembly of DNA nanomaterials. Nat. Mater. 2020, 19, 1012. [Google Scholar] [CrossRef]
- Pashuck, E.T.; Seeman, N.; Macfarlane, R. Self-assembly of bioinspired and biologically functional materials. MRS Bull. 2020, 45, 832–840. [Google Scholar] [CrossRef]
- Shen, H.J.; Wang, Y.Q.; Wang, J.; Li, Z.H.; Yuan, Q. Emerging Biomimetic Applications of DNA Nanotechnology. ACS Appl. Mater. Interfaces 2019, 11, 13859–13873. [Google Scholar] [CrossRef]
- Zhou, Z.X.; Fan, D.Q.; Winner, I. Modeling Gene Expression Instability by Programmed and Switchable Polymerization/Nicking DNA Nanomachineries. ACS Nano 2020, 14, 5046–5052. [Google Scholar] [CrossRef]
- Du, Y.; Peng, P.; Li, T. DNA Logic Operations in Living Cells Utilizing Lysosome-Recognizing Framework Nucleic Acid Nanodevices for Subcellular Imaging. ACS Nano 2019, 13, 5778–5784. [Google Scholar] [CrossRef]
- Fan, D.Q.; Shang, C.S.; Gu, W.L.; Wang, E.K.; Dong, S.J. Introducing Ratiometric Fluorescence to MnO2 Nanosheet-Based Biosensing: A Simple, Label-Free Ratiometric Fluorescent Sensor Programmed by Cascade Logic Circuit for Ultrasensitive GSH Detection. ACS Appl. Mater. Interfaces 2017, 9, 25870–25877. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.Q.; Zhu, X.Q.; Zhai, Q.F.; Wang, E.K.; Dong, S.J. Polydopamine Nanotubes as an Effective Fluorescent Quencher for Highly Sensitive and Selective Detection of Biomolecules Assisted with Exonuclease III Amplification. Anal. Chem. 2016, 88, 9158–9165. [Google Scholar] [CrossRef]
- Shi, H.; Wang, Y.X.; Zheng, J.; Ning, L.M.; Huang, Y.; Sheng, A.Z.; Chen, T.S.; Xiang, Y.; Zhu, X.L.; Li, G.X. Dual-Responsive DNA Nanodevice for the Available Imaging of an Apoptotic Signaling Pathway in Situ. ACS Nano 2019, 13, 12840–12850. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, C.C.; Liu, Y.; Cui, C.; Ge, J.; Tan, W.H. Multibranched Linear DNA-Controlled Assembly of Silver Nanoclusters and Their Applications in Aptamer-Based Cell Recognition. ACS Appl. Mater. Interfaces 2022, 14, 14953–14960. [Google Scholar] [CrossRef]
- Yan, N.; Lin, L.; Xu, C.N.; Tian, H.Y.; Chen, X.S. A GSH-Gated DNA Nanodevice for Tumor-Specific Signal Amplification of microRNA and MR Imaging-Guided Theranostics. Small 2019, 15, 1903016. [Google Scholar] [CrossRef]
- Yue, R.Y.; Chen, M.; Ma, N. Dual MicroRNA-Triggered Drug Release System for Combined Chemotherapy and Gene Therapy with Logic Operation. ACS Appl. Mater. Interfaces 2020, 12, 32493–32502. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.Q.; Wang, E.K.; Dong, S.J. An intelligent universal system yields double results with half the effort for engineering a DNA “Contrary Logic Pairs” library and various DNA combinatorial logic circuits. Mater. Horiz. 2017, 4, 924–931. [Google Scholar] [CrossRef]
- Fan, D.Q.; Zhu, J.B.; Zhai, Q.F.; Wang, E.K.; Dong, S.J. Cascade DNA logic device programmed ratiometric DNA analysis and logic devices based on a fluorescent dual-signal probe of a G-quadruplex DNAzyme. Chem. Commun. 2016, 52, 3766–3769. [Google Scholar] [CrossRef]
- Zhu, L.P.; Yu, L.Y.; Yang, X.R. Electrochemical-Based DNA Logic Devices Regulated by the Diffusion and Intercalation of Electroactive Dyes. ACS Appl. Mater. Interfaces 2021, 13, 42250–42257. [Google Scholar] [CrossRef]
- Zhu, L.P.; Yu, L.Y.; Meng, T.; Peng, Y.; Yang, X.R. Contrary Logic Pair Library, Parity Generator/Checker and Various Concatenated Logic Circuits Engineered by a Label-Free and Immobilization-Free Electrochemiluminescence Resonance Energy Transfer System. Small 2021, 17, 2102881. [Google Scholar] [CrossRef]
- Bhasikuttan, A.C.; Mohanty, J. Targeting G-quadruplex structures with extrinsic fluorogenic dyes: Promising fluorescence sensors. Chem. Commun. 2015, 51, 7581–7597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alba, J.J.; Sadurni, A.; Gargallo, R. Nucleic Acid i-Motif Structures in Analytical Chemistry. Crit. Rev. Anal. Chem. 2016, 46, 443–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, H.C.; Shi, Y.; Wang, Y.L.; Sun, Y.J.; Hu, J.T.; Ni, P.J.; Li, Z. Label-free turn-on fluorescent detection of melamine based on the anti-quenching ability of Hg2+ to gold nanoclusters. Biosens. Bioelectron. 2014, 53, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.Q.; Wang, E.K.; Dong, S.J. Upconversion-chameleon-driven DNA computing: The DNA-unlocked inner-filter-effect (DU-IFE) for operating a multicolor upconversion luminescent DNA logic library and Its biosensing application. Mater. Horiz. 2019, 6, 375–384. [Google Scholar] [CrossRef]
- Fan, D.Q.; Zhai, Q.F.; Zhou, W.J.; Zhu, X.Q.; Wang, E.K.; Dong, S.J. A label-free colorimetric aptasensor for simple, sensitive and selective detection of Pt (II) based on platinum (II)-oligonucleotide coordination induced gold nanoparticles aggregation. Biosens. Bioelectron. 2016, 85, 771–776. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.Q.; Zhu, J.B.; Liu, Y.Q.; Wang, E.K.; Dong, S.J. Label-free and enzyme-free platform for the construction of advanced DNA logic devices based on the assembly of graphene oxide and DNA-templated AgNCs. Nanoscale 2016, 8, 3834–3840. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, K.; Liu, Y.L.; Wang, H.Y.; Wu, J.; Zhu, F.F.; Zou, P. Binding-induced and label-free colorimetric method for protein detection based on autonomous assembly of hemin/G-quadruplex DNAzyme amplification strategy. Biosens. Bioelectron. 2015, 64, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.L.; Zhou, Z.; Gou, X.L.; Shi, W.C.; Gong, Y.; Yi, M.; Cheng, W.; Song, F.Z. Light up multiple protein dimers on cell surface based on proximity-induced fluorescence activation of DNA-templated sliver nanoclusters. Biosens. Bioelectron. 2021, 179, 8. [Google Scholar] [CrossRef]
- Seio, K.; Kanamori, T.; Tokugawa, M.; Ohzeki, H.; Masaki, Y.; Tsunoda, H.; Ohkubo, A.; Sekine, M. Fluorescent properties of oligonucleotides doubly modified with an indole-fused cytosine analog and 2-aminopurine. Bioorgan. Med. Chem. 2013, 21, 3197–3201. [Google Scholar] [CrossRef]
- Jean, J.M.; Hall, K.B. 2-Aminopurine electronic structure and fluorescence properties in DNA. Biochemistry 2002, 41, 13152–13161. [Google Scholar] [CrossRef]
- Peng, P.; Du, Y.; Sun, Y.D.; Liu, S.N.; Mi, L.; Li, T. Probing the propeller-like loops of DNA G-quadruplexes with looped-out 2-aminopurine for label-free switchable molecular sensing. Analyst 2018, 143, 3814–3820. [Google Scholar] [CrossRef]
- Wang, X.L.; Zeng, R.; Chu, S.N.; Tang, W.; Lin, N.; Fu, J.; Yang, J.R.; Gao, B. A quencher-free DNAzyme beacon for fluorescently sensing uranyl ions via embedding 2-aminopurine. Biosens. Bioelectron. 2019, 135, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.J.; Geng, N.N.; Zheng, X.; Luo, X.R.; Wu, M.S.; Zhang, H. DNA logic circuits based amplification system for quencher-free and highly sensitive detection of DNA and adenosine triphosphate. J. Pharmaceut. Biomed. 2018, 161, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.J.; Zhu, Z.C.; Zou, R.; Wang, L.Y.; Gong, H.; Cai, C.Q. An enzyme-free three-dimensional DNA walker powered by catalytic hairpin assembly for H5N1 DNA ratiometric detection. Microchem. J. 2021, 170, 106728. [Google Scholar] [CrossRef]
- Fan, D.Q.; Wang, E.K.; Dong, S.J. Simple, fast, label-free, and nanoquencher-free system for operating multivalued DNA logic gates using poly-thymine templated CuNPs as signal reporters. Nano Res. 2017, 10, 2560–2569. [Google Scholar] [CrossRef]
- Qing, Z.H.; He, X.X.; He, D.G.; Wang, K.M.; Xu, F.Z.; Qing, T.P.; Yang, X. Poly(thymine)-Templated Selective Formation of Fluorescent Copper Nanoparticles. Angew. Chem. Int. Edit. 2013, 2, 9719–9722. [Google Scholar] [CrossRef]
- Fan, D.Q.; Wang, E.K.; Dong, S.J. A DNA-based parity generator/checker for error detection through data transmission with visual readout and an output-correction function. Chem. Sci. 2017, 8, 1888–1895. [Google Scholar] [CrossRef] [Green Version]
- Fan, D.Q.; Wang, J.; Han, J.W.; Wang, E.K.; Dong, S.J. Engineering DNA logic systems with non-canonical DNA-nanostructures: Basic principles, recent developments and bio-applications. Sci. China-Chem. 2022, 65, 284–297. [Google Scholar] [CrossRef]
- Fan, D.Q.; Wang, K.; Zhu, J.B.; Xia, Y.; Han, Y.C.; Liu, Y.Q.; Wang, E.K. DNA-based visual majority logic gate with one-vote veto function. Chem. Sci. 2015, 6, 1973–1978. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.F.; He, Y.; Liu, Z.; Chen, J.H. Tetrahedron-Based Constitutional Dynamic Network for COVID-19 or Other Coronaviruses Diagnostics and Its Logic Gate Applications. Anal. Chem. 2022, 94, 714–722. [Google Scholar] [CrossRef]
- Han, J.W.; Wang, J.; Wang, J.; Fan, D.Q.; Dong, S.J. Recent advancements in coralyne (COR)-based biosensors: Basic principles, various strategies and future perspectives. Biosens. Bioelectron. 2022, 210, 114343. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.L.; Yuan, Y.W.; Wen, X.L.; Li, Y.; Cao, C.; Xiong, Q.H. A coordination and ligand replacement based three-input colorimetric logic gate sensing platform for melamine, mercury ions, and cysteine. RSC Adv. 2015, 5, 59106–59113. [Google Scholar] [CrossRef] [Green Version]
- Han, J.W.; Ding, Y.R.; Lv, X.J.; Zhang, Y.W.; Fan, D.Q. Integration of G-Quadruplex and Pyrene as a Simple and Efficient Ratiometric Fluorescent Platform That Programmed by Contrary Logic Pair for Highly Sensitive and Selective Coralyne (COR) Detection. Biosensors 2023, 13, 489. [Google Scholar] [CrossRef] [PubMed]
- Kuraishi, T.; Mizoguchi, Y.; Sun, Y.; Aoki, F.; Imakawa, K.; Sakai, S. The casein mRNA decay changes in parallel with the poly(A) tail length in the mouse mammary gland. Mol. Cell. Endocrinol 2002, 190, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.G.; Jiao, F.; Liao, Q.; Luo, H.T.; Li, H.; Sun, L.; Bu, D.C.; Yu, K.T.; Zhao, Y.; Chen, R.S. Genome-wide identification of cancer-related polyadenylated and non-polyadenylated RNAs in human breast and lung cell lines. Sci. China-Life Sci. 2013, 56, 503–512. [Google Scholar] [CrossRef]
- Zheng, D.; Tian, B. Sizing up the poly(A) tail: Insights from deep sequencing. Trends Biochem.Sci. 2014, 39, 255–257. [Google Scholar] [CrossRef] [Green Version]
- Liao, X.F.; Luo, N.; Li, M.Y.; Fu, H.; Zou, L. Label-free and highly sensitive fluorescent detection of bleomycin based on CRISPR-Cas12a and G-quadruplex-thioflavin T. Sensor. Actuat. B-Chem. 2023, 381, 133459. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Han, J.; Lv, X.; Hou, J.; Fan, D.; Dong, S. Coupling 2-Aminopurine with DNA Copper Nanoparticles as a Rapid and Enzyme-Free System for Operating DNA Contrary Logic Pairs. Chemistry 2023, 5, 1577-1587. https://doi.org/10.3390/chemistry5030108
Wang J, Han J, Lv X, Hou J, Fan D, Dong S. Coupling 2-Aminopurine with DNA Copper Nanoparticles as a Rapid and Enzyme-Free System for Operating DNA Contrary Logic Pairs. Chemistry. 2023; 5(3):1577-1587. https://doi.org/10.3390/chemistry5030108
Chicago/Turabian StyleWang, Jun, Jiawen Han, Xujuan Lv, Jingyu Hou, Daoqing Fan, and Shaojun Dong. 2023. "Coupling 2-Aminopurine with DNA Copper Nanoparticles as a Rapid and Enzyme-Free System for Operating DNA Contrary Logic Pairs" Chemistry 5, no. 3: 1577-1587. https://doi.org/10.3390/chemistry5030108
APA StyleWang, J., Han, J., Lv, X., Hou, J., Fan, D., & Dong, S. (2023). Coupling 2-Aminopurine with DNA Copper Nanoparticles as a Rapid and Enzyme-Free System for Operating DNA Contrary Logic Pairs. Chemistry, 5(3), 1577-1587. https://doi.org/10.3390/chemistry5030108