Diazenium Betaines Derived from the Stable Free Radical DPPH with Diradicaloid Behavior
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and General Characterization of the Betaines 3, 8, 14, and 15
2.2. X-ray Structure and ESR Spectra of Compound 5
2.3. Diradicaloid Behavior of Betaines 3, 8, 14, and 15
3. Materials and Methods
3.1. Chemical and Apparatus
3.2. X-ray Crystallographic Analysis
3.3. General Procedure for Synthesis of Betaines 3, 8, 14, and 15
3.4. General Procedure for the Synthesis of the Reduced Counterpart Compounds 4, 9, 16, and 17
3.5. Synthesis of Diradical 5
3.6. Compounds Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ionita, P. The Chemistry of DPPH· Free Radical and Congeners. Int. J. Mol. Sci. 2021, 22, 1545. [Google Scholar] [CrossRef] [PubMed]
- Balaban, A.T.; Frangopol, P.T.; Marculescu, M.; Bally, J. Factors affecting stability and equilibria of free radicals: Steric factors in hydrazyls. Tetrahedron 1961, 13, 258–267. [Google Scholar] [CrossRef]
- Viehe, H.G.; Janousek, Z.; Merenyi, R.; Stella, L. The captodative effect. Acc. Chem. Res. 1985, 18, 148–154. [Google Scholar] [CrossRef]
- Ionita, P.; Caproiu, M.T.; Luca, C.; Constantinescu, T.; Caldararu, H.; Balaban, A.T. Selective (15N) nitration of 2,2-diphenyl-1-(2,4- or 2,6-dinitrophenyl)-hydrazines or -hydrazyls. J. Label. Cpd. Radiopharm. 1998, XLI, 791–799. [Google Scholar] [CrossRef]
- Hristea, E.N.; Bem, M.; Balaban, T.S.; Eichhöfer, A.; Caproiu, M.T.; Draghici, C.; Ionita, G.; Spataru, T.; Enache, C.; Maganu, M.; et al. Novel 1,1-diphenylhydrazine derivatives of benzofurazan and their dimerization. Arkivoc 2011, xi, 98–221. [Google Scholar] [CrossRef]
- Staško, A.; Brezová, V.; Biskupič, S.; Mišík, V. The potential pitfalls of using 1,1-diphenyl-2-picrylhydrazyl to characterize antioxidants in mixed water solvents. Free Radic. Res. 2007, 41, 379–390. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2010, 53, 4290–4302. [Google Scholar] [CrossRef]
- Gulcin, İ.; Alwasel, S.H. DPPH radical scavenging assay. Processes 2023, 11, 2248. [Google Scholar] [CrossRef]
- Baschieri, A.; Amorati, R. Methods to determine chain-breaking antioxidant activity of nanomaterials beyond DPPH•. A Review. Antioxidants 2021, 10, 1551. [Google Scholar] [CrossRef]
- Chen, O.; Zhuang, J.; Guzzetta, F.; Lynch, J.; Angerhofer, A.; Cao, Y.C. Synthesis of water-soluble 2,2-diphenyl-1-picrylhydrazyl nanoparticles: A new standard for electron paramagnetic resonance spectroscopy. J. Am. Chem. Soc. 2009, 131, 12542–12543. [Google Scholar] [CrossRef]
- Brown, K.C.; Weil, J.A. Preparation of 2,2-diaryl-1-picrylhydrazyls using potassium permanganate. Can. J. Chem. 1986, 64, 1836–1838. [Google Scholar] [CrossRef]
- Baratoiu, R.D.; Bem, M.; Radutiu, A.C.; Spataru, T.; Radu, M.M.; Voicescu, M.; Ionita, G.; Stanica, N.; Constantinescu, T.; Balaban, A.T. 1-Picryl-2-phenyl-2-(4-picrylamidophenyl) diazenium betaine and its radical-anion: Synthesis and physical properties. Monatsh. Chem. 2017, 148, 1411–1416. [Google Scholar] [CrossRef]
- Arteaga, J.F.; Ruiz-Montoya, M.; Palma, A.; Alonso-Garrido, G.; Pintado, S.; Rodríguez-Mellado, J.M. Comparison of the simple cyclic voltammetry (cv) and dpph assays for the determination of antioxidant capacity of active principles. Molecules 2012, 17, 5126–5138. [Google Scholar] [CrossRef] [PubMed]
- Constantinescu, T.; Caproiu, M.T.; Zarna, N.; Caragheorgheopol, A.; Caldararu, H.; Stanciuc, G.; Radu, M.; Badescu, V.; Balaban, A.T. Reaction of 2,2-diphenyl-1-picrylhydrazyl (DPPH) with N-alkoxy di and trinitroanilines. New J. Chem. 1997, 21, 575–579. [Google Scholar]
- Balaban, A.T.; Constantinescu, T.; Caproiu, M.T.; Giorgi, M.; Balaban, T.S. Crystal and molecular structure of 1-picryl-2-phenyl-2-(4-picrylamidophenyl)- diazenium betaine: Analogy between a picramido group and an oxygen atom. Z. Naturforsch. B 2017, 72, 89–94. [Google Scholar] [CrossRef]
- Dobre, A.F.; Madalan, A.M.; Ionescu, S.; Hanganu, A.; Lete, C.; Popescu, C.C.; Paun, A.; Matache, M.; Ionita, P. Zwitterion or diradicaloid? The case of diazenium betaines derived from DPPH. J. Molec. Struct. 2023, 1275, 134703. [Google Scholar] [CrossRef]
- Kharlanov, V.; Rettig, W. Experimental and theoretical study of excited-state structure and relaxation processes of betaine-30 and of pyridinium model compounds. J. Phys. Chem. A 2009, 113, 10693–10703. [Google Scholar] [CrossRef]
- Abe, M. Diradicals. Chem. Rev. 2013, 113, 7011–7088. [Google Scholar] [CrossRef]
- Stuyver, T.; Chen, B.; Zeng, T.; Geerlings, P.; Proft, F.D.; Hoffmann, R. Do diradicals behave like radicals? Chem. Rev. 2019, 119, 11291–11351. [Google Scholar] [CrossRef]
- Mohamed, R.K.; Peterson, P.W.; Alabugin, I.V. Concerted reactions that produce diradicals and zwitterions: Electronic, steric, conformational, and kinetic control of cycloaromatization processes. Chem. Rev. 2013, 113, 7089–7129. [Google Scholar] [CrossRef]
- Jousselin-Oba, T.; Mamada, M.; Marrot, J.; Maignan, A.; Adachi, C.; Yassar, A.; Frigoli, M. Excellent semiconductors based on tetracenotetracene and pentacenopentacene: From stable closed-shell to singlet open-shell. J. Am. Chem. Soc. 2019, 141, 9373–9381. [Google Scholar] [CrossRef] [PubMed]
- Barker, J.E.; Dressler, J.; Valdivia, A.C.; Kishi, R.; Strand, E.T.; Zakharov, L.N.; MacMillan, S.N.; Gómez-García, C.J.; Nakano, M.; Casado, J.; et al. Molecule isomerism modulates the diradical properties of stable singlet diradicaloids. J. Am. Chem. Soc. 2020, 142, 1548–1555. [Google Scholar] [CrossRef]
- Hu, X.; Wang, W.; Wang, D.; Zheng, Y. The electronic applications of stable diradicaloids: Present and future. J. Mater. Chem. C 2018, 6, 11232–11242. [Google Scholar] [CrossRef]
- Tudose, M.; Constantinescu, T.; Balaban, A.T.; Ionita, P. Synthesis and electron paramagnetic resonance study of a nitroxide free radical covalently bonded on aminopropyl-silica gel. App. Surface Sci. 2008, 254, 1904–1908. [Google Scholar] [CrossRef]
- Patrascu, B.; Mocanu, S.; Coman, A.; Madalan, A.M.; Popescu, C.; Paun, A.; Matache, M.; Ionita, P. Synthesis of fluorescent dansyl derivatives of methoxyamine and diphenylhydrazine as free radical precursors. Int. J. Mol. Sci. 2020, 21, 3559. [Google Scholar] [CrossRef] [PubMed]
- Paun, A.; Zarafu, I.; Caproiu, M.T.; Ionita, P. Synthesis and structural characterization of a stable betaine imino-nitroxide free diradical. Arkivoc 2013, iv, 144–151. [Google Scholar] [CrossRef]
- Dobre, A.F.; Hanganu, A.; Nicolau, I.; Popescu, C.C.; Paun, A.; Madalan, A.M.; Tablet, C.; Matache, M. A Synthetic approach for oxadiazole-decorated azobenzene photoswitches. ChemPlusChem 2024, 89, e202300504. [Google Scholar] [CrossRef]
- Ni, Y.; Gopalakrishna, T.Y.; Phan, H.; Kim, T.; Herng, T.S.; Han, Y.; Tao, T.; Ding, J.; Kim, D.; Wu, J. 3D global aromaticity in a fully conjugated diradicaloid cage at different oxidation states. Nat. Chem. 2020, 12, 242–248. [Google Scholar] [CrossRef]
- Rottschafer, D.; Neumann, B.; Stammler, H.G.; Andradab, D.M.; Ghadwal, R.S. Kekule diradicaloids derived from a classical N-heterocyclic carbene. Chem. Sci. 2018, 9, 4970–4976. [Google Scholar] [CrossRef]
- Wang, W.; Ge, L.; Xue, G.; Miao, F.; Chen, P.; Chen, H.; Lin, Y.; Ni, Y.; Xiong, J.; Hu, Y.; et al. Fine-tune the diradical character of molecular systems via heteroatom effect. Chem. Commun. 2020, 56, 1405–1408. [Google Scholar] [CrossRef]
- Hu, X.; Chen, H.; Zhao, L.; Miao, M.; Han, J.; Wang, J.; Guo, J.; Hud, Y.; Zheng, Y. Nitrogen analogues of Chichibabin’s and Muller’s hydrocarbons with small singlet–triplet energy gaps. Chem. Commun. 2019, 55, 7812–7815. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Hong, Y.; Rivero, S.M.; Kim, J.; Zafra, L.; Phan, H.; Gopalakrishna, T.Y.; Seng, T.; Ding, J.; Casado, J.; et al. Stable nitrogen-centered bis(imino)rylenediradicaloids. Chem. Eur. J. 2018, 24, 4944–4951. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Zerbini, A.; Casado, J.; Negri, F. Ambipolar charge transport in organic semiconductors: How intramolecular reorganization energy is controlled by diradical character. Molecules 2023, 28, 4642. [Google Scholar] [CrossRef]
- Tudose, M.; Angelescu, D.; Ionita, G.; Caproiu, M.T.; Ionita, P. New hydrazyl derivatives with multiple properties. Let. Org. Chem. 2010, 7, 182–185. [Google Scholar] [CrossRef]
- Kubo, T. Closed-shell and open-shell dual nature of singlet diradical compounds. Pure Appl. Chem. 2023, 95, 363–375. [Google Scholar] [CrossRef]
- Weijia Xie, W.; Yang, J.; Wang, B.; Li, B. Regioselective ortho olefination of aryl sulfonamide via rhodium-catalyzed direct c–h bond activation. J. Org. Chem. 2014, 79, 8278–8287. [Google Scholar] [CrossRef]
Compound | Details | M. W. | Yield (%) | Rf | λmax (nm) | ε (10−4) |
---|---|---|---|---|---|---|
3 | betaine | 438 | 29 | 0.67 * | 602 | 2.44 |
4 | reduced form of 3 | 410 | 49 | 0.62 * | 382 | 1.54 |
5 | diradical | 814 | 75 | 0.68 * | 762 | 2.97 |
8 | betaine | 562 | 23 | 0.20 * | 577 | 2.07 |
9 | reduced form of 8 | 564 | 40 | 0.20 * | 306 | 1.38 |
14 | betaine | 642 | 56 | 0.38 ^ | 603 | 2.83 |
15 | betaine | 678 | 59 | 0.35 ^ | 603 | 2.84 |
16 | reduced form of 14 | 644 | 22 | 0.51 ^ | 344 | 4.70 |
17 | reduced form of 15 | 680 | 12 | 0.62 ^ | 347 | 4.45 |
Compound | 5···0.5 DCM |
---|---|
Chemical formula | C36.5H23ClN12O12 |
M (g mol−1) | 857.12 |
Temperature, (K) | 293(2) |
Wavelength, (Å) | 0.71073 |
Crystal system | Monoclinic |
Space group | C2/c |
a (Å) | 40.203(2) |
b (Å) | 7.4012(4) |
c (Å) | 13.2318(6) |
α (°) | 90 |
β (°) | 96.998(4) |
γ (°) | 90 |
V (Å3) | 3907.8(4) |
Z | 4 |
Dc (g cm−3) | 1.457 |
F(000) | 1756 |
μ (mm−1) | 0.178 |
Goodness of fit on F2 | 1.044 |
Final R1, wR2 [I > 2σ(I)] | 0.0589, 0.1850 |
R1, wR2 (all data) | 0.0718, 0.2005 |
Largest diff. peak and hole (eÅ−3) | 0.504, −0.239 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobre, A.F.; Mădălan, A.M.; Hanganu, A.; Ionita, P. Diazenium Betaines Derived from the Stable Free Radical DPPH with Diradicaloid Behavior. Chemistry 2024, 6, 899-910. https://doi.org/10.3390/chemistry6050052
Dobre AF, Mădălan AM, Hanganu A, Ionita P. Diazenium Betaines Derived from the Stable Free Radical DPPH with Diradicaloid Behavior. Chemistry. 2024; 6(5):899-910. https://doi.org/10.3390/chemistry6050052
Chicago/Turabian StyleDobre, Adela F., Augustin M. Mădălan, Anamaria Hanganu, and Petre Ionita. 2024. "Diazenium Betaines Derived from the Stable Free Radical DPPH with Diradicaloid Behavior" Chemistry 6, no. 5: 899-910. https://doi.org/10.3390/chemistry6050052
APA StyleDobre, A. F., Mădălan, A. M., Hanganu, A., & Ionita, P. (2024). Diazenium Betaines Derived from the Stable Free Radical DPPH with Diradicaloid Behavior. Chemistry, 6(5), 899-910. https://doi.org/10.3390/chemistry6050052