Open-Shell Systems—a Memorial Issue Dedicated to Professor Masayoshi Nakano

A special issue of Chemistry (ISSN 2624-8549). This special issue belongs to the section "Theoretical and Computational Chemistry".

Deadline for manuscript submissions: 31 January 2025 | Viewed by 2667

Special Issue Editors


E-Mail Website
Guest Editor
Graduate School of Science, The University of Osaka, Machikaneyama 1-1, Toyonaka 560-0043, Osaka, Japan
Interests: structural and physical organic chemistry; syntheses and properties of polycyclic aromatic compounds with open-shell character; development of cooperative proton and electron transfer systems based on π-conjugated molecules and transition metal complexes

E-Mail Website
Guest Editor
Graduate School of Engineering Science, The University of Osaka, Machikaneyama 1-3, Toyonaka 560-8531, Osaka, Japan
Interests: quantum chemistry and theoretical chemistry; properties of degenerate and open-shell systems; d-π conjugated systems; metal complexes; metal clusters
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 73908526, Hiroshima, Japan
Interests: reactive intermediates chemistry; organic photoreactions

Special Issue Information

Dear Colleagues,

This Special Issue of Chemistry is dedicated to Dr. Masayoshi Nakano (1964–2021), who made significant contributions to the theoretical study of open-shell systems. He studied chemistry at the University of Osaka and later served as a professor there, dedicating his career to research and education in theoretical chemistry. His outstanding work on a development of the theoretical analysis for electronic structures in open-shell systems has greatly influenced our understanding of the behavior of π-electrons and the design of new functional materials in materials science. His theories continue to be widely applied in various fields of chemistry, impacting many scientists.

The aim of this Special Issue is to compile the latest research and applications related to open-shell systems, emphasizing the collaboration between experimental and theoretical approaches that Masayoshi Nakano deeply valued. The issue covers a wide range of topics, including the theoretical foundations of open-shell systems, methods for analyzing electronic structures, the development of novel π-conjugated open-shell molecules, the investigation of unique physical properties, and applications in materials science. We hope this Special Issue will serve as a valuable resource for researchers working on open-shell systems and help to honor his remarkable achievements.

Prof. Dr. Takashi Kubo
Prof. Dr. Yasutaka Kitagawa
Prof. Dr. Manabu Abe
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Chemistry is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • open-shell
  • radical, diradical, and multiradical
  • diradicaloid
  • magnetic and electroconductive properties
  • non-linear optics, singlet fissions, and optical properties
  • catalysis and reaction
  • theoretical model and calculation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 1933 KiB  
Article
Theoretical Study on One- and Two-Photon Absorption Properties of π-Stacked Multimer Models of Phenalenyl Radicals
by Masako Yokoyama, Ryohei Kishi and Yasutaka Kitagawa
Chemistry 2024, 6(6), 1427-1438; https://doi.org/10.3390/chemistry6060085 - 14 Nov 2024
Viewed by 393
Abstract
Effects of the number of monomers (N) on the two-photon absorption (TPA) properties of π-stacked multimer models consisting of phenalenyl radicals were investigated theoretically. We conducted spectral simulations for the π-stacked N-mer models (N = 2, 4, and 6) [...] Read more.
Effects of the number of monomers (N) on the two-photon absorption (TPA) properties of π-stacked multimer models consisting of phenalenyl radicals were investigated theoretically. We conducted spectral simulations for the π-stacked N-mer models (N = 2, 4, and 6) with different stacking distances (d1) and their alternation patterns (d2/d1). Excitation energies and transition dipole moments were calculated at the extended multi-configurational quasi-degenerate second-order perturbation theory (XMC-QDPT2) level based on the complete active space self-consistent field (CASSCF) wavefunctions with the active space orbitals constructed from the singly occupied molecular orbitals (SOMOs) of monomers. The TPA cross-section value per dimer unit at the first peak, originating from the electronic transition along the stacking direction, was predicted to increase significantly as the d2/d1 approaches one, as the d1 decreases, and as the N increases from 2 to 6. These tendencies are similar to the calculation results for the static hyperpolarizabilities. Full article
Show Figures

Graphical abstract

12 pages, 3150 KiB  
Article
Diazenium Betaines Derived from the Stable Free Radical DPPH with Diradicaloid Behavior
by Adela F. Dobre, Augustin M. Mădălan, Anamaria Hanganu and Petre Ionita
Chemistry 2024, 6(5), 899-910; https://doi.org/10.3390/chemistry6050052 - 3 Sep 2024
Viewed by 726
Abstract
Starting from the well known stable free radical DPPH (or its reduced counterpart, 2,2-diphenyl-1-picryl-hydrazine) and several amino derivatives, novel zwitterionic compounds (diazenium betaines) were obtained and characterized by different means, like NMR, IR, MS, and UV–Vis. These betaines are highly intense blue-colored compounds [...] Read more.
Starting from the well known stable free radical DPPH (or its reduced counterpart, 2,2-diphenyl-1-picryl-hydrazine) and several amino derivatives, novel zwitterionic compounds (diazenium betaines) were obtained and characterized by different means, like NMR, IR, MS, and UV–Vis. These betaines are highly intense blue-colored compounds that can be easily reduced by ascorbic acid (vitamin C) or sodium ascorbate to their corresponding para-phenyl substituted derivatives of DPPH, which have a yellow color. Most of such redox processes were found to be reversible. However, the oxidation of 2-p-aminophenyl-2-phenyl-1-picryl-hydrazine led to an azo-derivative of DPPH diradical, and its structure was unveiled by X-ray monocrystal diffraction. Possible diradicaloid behavior is also discussed. Full article
Show Figures

Figure 1

14 pages, 5433 KiB  
Article
The Magnetic Properties of Fluorenyl and tert-Butyl-nitroxyl Acene-Based Derivatives: A Quantum Chemical Insight
by Alyona A. Starikova, Maxim G. Chegerev, Andrey G. Starikov and Vladimir I. Minkin
Chemistry 2024, 6(5), 816-829; https://doi.org/10.3390/chemistry6050049 - 23 Aug 2024
Cited by 1 | Viewed by 840
Abstract
Acenes, as a class of polycyclic aromatic hydrocarbons, attract considerable attention due to their remarkable nonlinear optical and magnetic properties. The aim of this work was the elucidation of the capability of radical-substituted acene derivatives to undergo spin-state-switching rearrangements. For this purpose, a [...] Read more.
Acenes, as a class of polycyclic aromatic hydrocarbons, attract considerable attention due to their remarkable nonlinear optical and magnetic properties. The aim of this work was the elucidation of the capability of radical-substituted acene derivatives to undergo spin-state-switching rearrangements. For this purpose, a series of acene-based (anthracene, pentacene, heptacene) molecules bearing fluorenyl and tert-butyl-nitroxyl radicals were investigated through comprehensive quantum chemical modeling of their electronic structures, isomerization and magnetic properties. A possible mechanism of the transformation of the closed-shell folded isomer into the biradical twisted structure of the bis-fluorenyl anthracene has been ascertained by applying the procedure of searching for the Minimum Energy Crossing Point. The conditions favoring the occurrence of spin-state-switching in such classes of polycyclic aromatic hydrocarbon derivatives have been formulated. By varying the size of an acene core and the type of radical substituent, the compounds capable of changing their magnetic properties have been revealed. Considering the unique features of radical-bearing acene-based derivatives, the proposed molecules can be used as functional materials in photonics and electronics. Full article
Show Figures

Graphical abstract

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

Title: Synthesis, isolation, and characterization of terbenzo- and tetrabenzoolympicenyl radicals
Author: Sun
Highlights: The synthesis of two π-extended hydrocarbon radicals is described The solid state and solution phased structures are elucidated by X-ray diffraction and EPR The physical properties were investigated by spectroscopic and computational methods.

Back to TopTop