Antiproliferative Activity of an Organometallic Sn(IV) Coordination Compound Based on 1-Methylbenzotriazole against Human Cancer Cell Lines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Spectroscopic-Physical Measurements
2.2. Preparation of the Complex
2.3. Single-Crystal X-ray Crystallography
2.4. Cytostatic Analysis
- Biochemicals and reagents
- Cell cultures and conditions
- Phase contrast microscopy
- WST-1 cell viability assay
- Statistical analysis
3. Results
3.1. Synthetic Comments
3.2. Characterization of the Products
3.2.1. Vibrational Spectroscopy
3.2.2. 1H and 13C{1H} NMR Spectroscopy
3.2.3. UV/Vis Spectroscopy
3.3. Description of the Molecular Structure and Packing
3.4. Investigation of Antiproliferative Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ioele, G.; Chieffallo, M.; Occhiuzzi, M.A.; De Luca, M.; Garofalo, A.; Ragno, G.; Grande, F. Anticancer Drugs: Recent Strategies to Improve Stability Profile, Pharmacokinetic and Pharmacodynamic Properties. Molecules 2022, 27, 5436. [Google Scholar] [CrossRef] [PubMed]
- Anttila, J.V.; Shubin, M.; Cairns, J.; Borse, F.; Guo, Q.; Mononen, T.; Vázquez-García, I.; Pulkkinen, O.; Mustonen, V. Contrasting the impact of cytotoxic and cytostatic drug therapies on tumour progression. PLoS Comput. Biol. 2019, 15, e1007493. [Google Scholar] [CrossRef] [PubMed]
- Grijalva, M.; Vallejo-López, M.J.; Salazar, L.; Camacho, J.; Kumar, B. Cytotoxic and antiproliferative effects of nanomaterials on cancer cell lines: A review. In Unraveling the Safety Profile of Nanoscale Particles and Materials—From Biomedical to Environmental Applications; InTech: Takasago, Japan, 2018; pp. 63–85. [Google Scholar]
- Kaluderovic, G.; Paschke, R. Anticancer Metallotherapeutics in Preclinical Development. Curr. Med. Chem. 2011, 18, 4738–4752. [Google Scholar] [CrossRef] [PubMed]
- Hadjikakou, S.K.; Hadjiliadis, N. Antiproliferative and anti-tumor activity of organotin compounds. Coord. Chem. Rev. 2009, 253, 235–249. [Google Scholar] [CrossRef]
- Syed Annuar, S.N.; Kamaludin, N.F.; Awang, N.; Chan, K.M. Cellular Basis of Organotin(IV) Derivatives as Anticancer Metallodrugs: A Review. Front. Chem. 2021, 9, 657599. [Google Scholar] [CrossRef]
- Hazra, S.; Paul, A.; Sharma, G.; Koch, B.; da Silva, M.F.C.G.; Pombeiro, A.J.L. Sulfonated Schiff base Sn(IV) complexes as potential anticancer agents. J. Inorg. Biochem. 2016, 162, 83–95. [Google Scholar] [CrossRef]
- Silva, A.; Luís, D.; Santos, S.; Silva, J.; Mendo, A.S.; Coito, L.; Silva, T.F.S.; Silva, M.F.C.G.d.; Martins, L.M.D.R.S.; Pombeiro, A.J.L.; et al. Biological characterization of the antiproliferative potential of Co(II) and Sn(IV) coordination compounds in human cancer cell lines: A comparative proteomic approach. Drug Metabol. Drug Interact. 2013, 28, 167–176. [Google Scholar] [CrossRef]
- Milaeva, E.R.; Shpakovsky, D.B.; Gracheva, Y.A.; Antonenko, T.A.; Ksenofontova, T.D.; Nikitin, E.A.; Berseneva, D.A. Novel selective anticancer agents based on Sn and Au complexes. Mini-review. Pure Appl. Chem. 2020, 92, 1201–1216. [Google Scholar] [CrossRef]
- Hong, M.; Chang, G.; Li, R.; Niu, M. Anti-proliferative activity and DNA/BSA interactions of five mono- or di-organotin(iv) compounds derived from 2-hydroxy-N′-[(2-hydroxy-3-methoxyphenyl)methylidene]-benzohydrazone. New J. Chem. 2016, 40, 7889–7900. [Google Scholar] [CrossRef]
- Banti, C.N.; Hadjikakou, S.K.; Sismanoglu, T.; Hadjiliadis, N. Anti-proliferative and antitumor activity of organotin(IV) compounds. An overview of the last decade and future perspectives. J. Inorg. Biochem. 2019, 194, 114–152. [Google Scholar] [CrossRef]
- Attanzio, A.; D’Agostino, S.; Busà, R.; Frazzitta, A.; Rubino, S.; Girasolo, M.A.; Sabatino, P.; Tesoriere, L. Cytotoxic Activity of Organotin(IV) Derivatives with Triazolopyrimidine Containing Exocyclic Oxygen Atoms. Molecules 2020, 25, 859. [Google Scholar] [CrossRef] [PubMed]
- Amir, M.K.; Khan, S.Z.; Hayat, F.; Hassan, A.; Butler, I.S.; Zia-ur-Rehman. Anticancer activity, DNA-binding and DNA-denaturing aptitude of palladium(II) dithiocarbamates. Inorg. Chim. Acta 2016, 451, 31–40. [Google Scholar] [CrossRef]
- Gielen, M. Review: Organotin compounds and their therapeutic potential: A report from the Organometallic Chemistry Department of the Free University of Brussels. Appl. Organomet. Chem. 2002, 16, 481–494. [Google Scholar] [CrossRef]
- Tabassum, S.; Yadav, S.; Arjmand, F. Exploration of glycosylated-organotin(IV) complexes as anticancer drug candidates. Inorg. Chim. Acta 2014, 423, 38–45. [Google Scholar] [CrossRef]
- Basu Baul, T.S.; Paul, A.; Pellerito, L.; Scopelliti, M.; Singh, P.; Verma, P.; de Vos, D. Triphenyltin(IV) 2-[(E)-2-(aryl)-1-diazenyl]benzoates as anticancer drugs: Synthesis, structural characterization, in vitro cytotoxicity and study of its influence towards the mechanistic role of some key enzymes. Investig. New Drugs 2010, 28, 587–599. [Google Scholar] [CrossRef]
- Pruchnik, H.; Lis, T.; Latocha, M.; Zielińska, A.; Ułaszewski, S.; Pelińska, I.; Pruchnik, F.P. Butyltin(IV) 2-sulfobenzoates: Synthesis, structural characterization and their cytostatic and antibacterial activities. J. Inorg. Biochem. 2012, 111, 25–32. [Google Scholar] [CrossRef]
- Saxena, A.K.; Huber, F. Organotin compounds and cancer chemotherapy. Coord. Chem. Rev. 1989, 95, 109–123. [Google Scholar] [CrossRef]
- Kolyada, M.; Osipova, V.; Berberova, N.; Pimenov, Y.; Milaeva, E. Decline of Prooxidant Activity of Butyl and Phenyl Derivatives of Tin in the Presence of meso-Tetrakis(3,5-di-tert-butyl-4-hydroxyphenyl)porphyrin. Macroheterocycles 2017, 10, 57–61. [Google Scholar] [CrossRef]
- Murumkar, P.R.; Ghuge, R.B. Chapter 9—Vicinal Diaryl Oxadiazoles, Oxazoles, and Isoxazoles. In Vicinal Diaryl Substituted Heterocycles; Elsevier: Amsterdam, The Netherlands, 2018; pp. 277–303. [Google Scholar]
- Briguglio, I.; Piras, S.; Corona, P.; Gavini, E.; Nieddu, M.; Boatto, G.; Carta, A. Benzotriazole: An overview of its versatile biological behavior. Eur. J. Med. Chem. 2015, 97, 612–648. [Google Scholar] [CrossRef]
- Hall, C.D.; Panda, S.S. The Benzotriazole Story. Adv. Heterocycl. Chem. 2016, 119, 1–23. [Google Scholar]
- Loukopoulos, E.; Kostakis, G. Recent advances in the coordination chemistry of benzotriazole ligands. Coord. Chem. Rev. 2019, 395, 193–229. [Google Scholar] [CrossRef]
- Stamou, C.; Lada, Z.G.; Paschalidou, S.; Chasapis, C.T.; Perlepes, S.P. Towards Construction of the “Periodic Table” of 1-methylbenzotriazole (review). Inorganics 2024, 12, 208. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SADABS, Version 2.03; Bruker Analytical X-ray Systems: Madison, WI, USA, 2000. [Google Scholar]
- Sheldrick, G. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. A 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Stamou, C.; Barouni, E.; Plakatouras, J.C.; Sigalas, M.M.; Raptopoulou, C.P.; Psycharis, V.; Bakalbassis, E.G.; Perlepes, S.P. The “Periodic Table” of 1-methylbenzotriazole: Zinc(II) Complexes. Inorganics 2023, 11, 356. [Google Scholar] [CrossRef]
- Edgell, W.F.; Ward, C.H. The Raman and infrared spectra of the series (CH3)nSnCl(4−n). J. Mol. Spectrosc. 1962, 8, 343–364. [Google Scholar] [CrossRef]
- Dimitropoulos, A.; Stamou, C.; Sp, P.; Lada, Z.; Petsalakis, I.; Marinakis, S. A Study of 1-Methylbenzotriazole (MEBTA) Using Quantum Mechanical Calculations and Vibrational, Electronic, and Nuclear Magnetic Resonance Spectroscopies. J. Eng. Sci. Technol. Rev. 2023, 16, 77–84. [Google Scholar] [CrossRef]
- Cardin, C.J.; Roy, A. Anticancer activity of organotin compounds. 2. Interaction of diorganotin dihalides with nucleic acid bases and nucleosides; the synthesis of adenine, adenosine and 9-methyladenine adducts. Inorg. Chim. Acta 1985, 107, 57–61. [Google Scholar] [CrossRef]
- Alberte, B.; Sánchez González, A.; García, E.; Casas, J.S.; Sordo, J.; Castellano, E.E. Complexes of dimethyldihalotin(IV) with imidazole and pyrazole: The crystal structure of dibromobis(pyrazole)dimethyltin(IV). J. Organomet. Chem. 1988, 338, 187–193. [Google Scholar] [CrossRef]
- Geary, W.J. The use of conductivity measurements in organic solvents for the characterization of coordination compounds. Coord. Chem. Rev. 1971, 7, 81–122. [Google Scholar] [CrossRef]
- Ceballos-Torres, J.; del Hierro, I.; Prashar, S.; Fajardo, M.; Mijatović, S.; Maksimović-Ivanić, D.; Kaluđerović, G.N.; Gómez-Ruiz, S. Alkenyl-substituted titanocene dichloride complexes: Stability studies, binding and cytotoxicity. J. Organomet. Chem. 2014, 769, 46–57. [Google Scholar] [CrossRef]
- Sharma, A.; Dhingra, N.; Singh, H.L.; Khaturia, S.; Bhardawaj, U. New Complexes of organotin(IV) and organosilicon(IV) with 2-{(3,4-dimethoxybenzylidene)amino}-benzenethiol: Synthesis, spectral, theoretical, antibacterial, docking studies. J. Mol. Struct. 2022, 1261, 132812. [Google Scholar] [CrossRef]
- Shahzadi, S.; Ali, S. Structural Chemistry of Organotin(IV) Complexes. J. Iran. Chem. Soc. 2008, 5, 16–28. [Google Scholar] [CrossRef]
- Mangani, S.; Piperigkou, Z.; Koletsis, N.; Ioannou, P.; Karamanos, N.K. Estrogen receptors and extracellular matrix: The critical interplay in cancer development and progression. FEBS J. 2024; in press. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stamou, C.; Gourdoupi, C.; Dechambenoit, P.; Papaioannou, D.; Piperigkou, Z.; Lada, Z.G. Antiproliferative Activity of an Organometallic Sn(IV) Coordination Compound Based on 1-Methylbenzotriazole against Human Cancer Cell Lines. Chemistry 2024, 6, 1189-1200. https://doi.org/10.3390/chemistry6050068
Stamou C, Gourdoupi C, Dechambenoit P, Papaioannou D, Piperigkou Z, Lada ZG. Antiproliferative Activity of an Organometallic Sn(IV) Coordination Compound Based on 1-Methylbenzotriazole against Human Cancer Cell Lines. Chemistry. 2024; 6(5):1189-1200. https://doi.org/10.3390/chemistry6050068
Chicago/Turabian StyleStamou, Christina, Chrisavgi Gourdoupi, Pierre Dechambenoit, Dionissios Papaioannou, Zoi Piperigkou, and Zoi G. Lada. 2024. "Antiproliferative Activity of an Organometallic Sn(IV) Coordination Compound Based on 1-Methylbenzotriazole against Human Cancer Cell Lines" Chemistry 6, no. 5: 1189-1200. https://doi.org/10.3390/chemistry6050068
APA StyleStamou, C., Gourdoupi, C., Dechambenoit, P., Papaioannou, D., Piperigkou, Z., & Lada, Z. G. (2024). Antiproliferative Activity of an Organometallic Sn(IV) Coordination Compound Based on 1-Methylbenzotriazole against Human Cancer Cell Lines. Chemistry, 6(5), 1189-1200. https://doi.org/10.3390/chemistry6050068