Easy Synthesis and In Vitro Evaluation of Halogenated Chalcones against Trypanosoma cruzi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Apparatus
2.2. Synthesis of Halcone Derivatives (1–8)
2.3. Biological Assays
3. Results and Discussion
3.1. Synthesis
3.2. Spectroscopic Characterization
3.3. In Vitro Anti-Trypanosoma cruzi Assays
Determination of CL50 agaist T. cruzi
3.4. ADME Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Singh, P.; Anand, A.; Kumar, V. Recent developments in biological activities of chalcones: A mini review. Eur. J. Med. Chem. 2014, 85, 758–777. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, D.K.; Bharti, S.K. Therapeutic potential of chalcones as cardiovascular agents. Life Sci. 2016, 148, 154–172. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A Privileged Structure in Medicinal Chemistry. Chem. Rev. 2017, 117, 7762–7810. [Google Scholar] [CrossRef]
- Yadav, P.; Lal, K.; Kumar, A.; Guru, S.K.; Jaglan, S.; Bhushan, S. Green synthesis and anticancer potential of chalcone linked-1,2,3-triazoles. Eur. J. Med. Chem. 2017, 126, 944–953. [Google Scholar] [CrossRef]
- Adelusi, T.I.; Du, L.; Chowdhury, A.; Xiaoke, G.; Lu, Q.; Yin, X. Signaling pathways and proteins targeted by antidiabetic chalcones. Life Sci. 2021, 284, 118982. [Google Scholar] [CrossRef]
- Zeng, Y.; Qin, B.; Shi, Y.-W.; Long, Y.-S.; Deng, W.-Y.; Li, B.-M.; Tang, B.; Zhao, Q.-H.; Gao, M.-M.; He, N.; et al. Ilepcimide inhibited sodium channel activity in mouse hippocampal neurons. Epilepsy Res. 2021, 170, 106533. [Google Scholar] [CrossRef]
- Mathew, B.; Adeniyi, A.A.; Joy, M.; Mathew, G.E.; Singh-Pillay, A.; Sudarsanakumar, C.; Soliman, M.E.S.; Suresh, J. Antioxidant behavior of functionalized chalcone-a combined quantum chemical and crystallographic structural investigation. J. Mol. Struct. 2017, 1146, 301–308. [Google Scholar] [CrossRef]
- Dan, W.; Dai, J. Recent developments of chalcones as potential antibacterial agents in medicinal chemistry. Eur. J. Med. Chem. 2020, 187, 111980. [Google Scholar] [CrossRef]
- Guglielmi, P.; Mathew, B.; Secci, D.; Carradori, S. Chalcones: Unearthing their therapeutic possibility as monoamine oxidase B inhibitors. Eur. J. Med. Chem. 2020, 205, 112650. [Google Scholar] [CrossRef]
- Mahapatra, D.K.; Bharti, S.K.; Asati, V. Chalcone scaffolds as anti-infective agents: Structural and molecular target perspectives. Eur. J. Med. Chem. 2015, 101, 496–524. [Google Scholar] [CrossRef]
- de Castro, C.C.B.; Costa, P.S.; Laktin, G.T.; de Carvalho, P.H.D.; Geraldo, R.B.; de Moraes, J.; Pinto, P.L.S.; Couri, M.R.C.; de F Pinto, P.; Da Silva Filho, A.A. Cardamonin, a schistosomicidal chalcone from Piper aduncum L. (Piperaceae) that inhibits Schistosoma mansoni ATP diphosphohydrolase. Phytomedicine 2015, 22, 921–928. [Google Scholar] [CrossRef] [PubMed]
- Atukuri, D.; Vijayalaxmi, S.; Sanjeevamurthy, R.; Vidya, L.; Prasannakumar, R.; Raghavendra, M.M. Identification of quinoline-chalcones and heterocyclic chalcone-appended quinolines as broad-spectrum pharmacological agents. Bioorg. Chem. 2020, 105, 104419. [Google Scholar] [CrossRef] [PubMed]
- Passalacqua, T.G.; Dutra, L.A.; de Almeida, L.; Velásquez, A.M.A.; Torres Esteves, F.A.; Yamasaki, P.R.; dos Santos Bastos, M.; Regasini, L.O.; Michels, P.A.M.; da Silva Bolzani, V.; et al. Synthesis and evaluation of novel prenylated chalcone derivatives as anti-leishmanial and anti-trypanosomal compounds. Bioorg. Med. Chem. Lett. 2015, 25, 3342–3345. [Google Scholar] [CrossRef] [PubMed]
- Barroso Gomes, N.D.; Magalhães, E.P.; Rodrigues Ribeiro, L.; Washington Cavalcante, J.; Gomes Maia, M.; Cunha da Silva, F.R.; Ali, A.; Machado Marinho, M.; Silva Marinho, E.; Silva dos Santos, H.; et al. Trypanocidal potential of synthetic p-aminochalcones: In silico and in vitro evaluation. Bioorg. Chem. 2023, 141, 106931. [Google Scholar] [CrossRef]
- Souza, G.B.; Santos, T.A.C.; Silva, A.P.S.; Barreiros, A.L.B.S.; Nardelli, V.B.; Siqueira, I.B.; Dolabella, S.S.; Costa, E.V.; Alves, P.B.; Scher, R.; et al. Synthesis of chalcone derivatives by Claisen-Schmidt condensation and in vitro analyses of their antiprotozoal activities. Nat. Prod. Res. 2022, 38, 1326–1333. [Google Scholar] [CrossRef]
- World Health Organization. Chagas Disease (American Trypanosomiasis). Available online: https://www.who.int/health-topics/chagas-disease#tab=tab_1 (accessed on 1 June 2024).
- Martins-Melo, F.R.; Carneiro, M.; Ribeiro, A.L.P.; Bezerra, J.M.T.; Werneck, G.L. Burden of Chagas disease in Brazil, 1990–2016: Findings from the Global Burden of Disease Study 2016. Int. J. Parasitol. 2019, 49, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Balouz, V.; Bracco, L.; Ricci, A.D.; Romer, G.; Agüero, F.; Buscaglia, C.A. Serological Approaches for Trypanosoma cruzi Strain Typing. Trends Parasitol. 2021, 37, 214–225. [Google Scholar] [CrossRef]
- Guarner, J. Chagas disease as example of a reemerging parasite. Semin. Diagn. Pathol. 2019, 36, 164–169. [Google Scholar] [CrossRef]
- Álvarez-Hernández, D.A.; Franyuti-Kelly, G.A.; Díaz-López-Silva, R.; González-Chávez, A.M.; González-Hermosillo-Cornejo, D.; Vázquez-López, R. Chagas disease: Current perspectives on a forgotten disease. Rev. Méd. Hosp. Gen. Méx. 2018, 81, 154–164. [Google Scholar] [CrossRef]
- Martins-Melo, F.R.; Castro, M.C.; Werneck, G.L. Levels and trends in Chagas disease-related mortality in Brazil, 2000–2019. Acta Trop. 2021, 220, 105948. [Google Scholar] [CrossRef]
- Conners, E.E.; Vinetz, J.M.; Weeks, J.R.; Brouwer, K.C. A global systematic review of Chagas disease prevalence among migrants. Acta Trop. 2016, 156, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, B.; Martínez, I.; Schabib-Hany, M. First report of family clusters of Chagas disease seropositive blood donors in Mexico City and their epidemiological relevance. Acta Trop. 2019, 193, 23–30. [Google Scholar] [CrossRef] [PubMed]
- De Souza, W.; de Carvalho, T.M.U.; Barrias, E.S. Review on Trypanosoma cruzi: Host Cell Interaction. Int. J. Cell Biol. 2010, 2010, 295394. [Google Scholar] [CrossRef]
- Souza, R.O.O.; Crispim, M.; Silber, A.M.; Damasceno, F.S. Glutamine Analogues Impair Cell Proliferation, the Intracellular Cycle and Metacyclogenesis in Trypanosoma cruzi. Molecules 2020, 25, 1628. [Google Scholar] [CrossRef]
- Rassi, A., Jr.; Rassi, A.; de Rezende, J.M. American trypanosomiasis (Chagas disease). Infect. Dis. Clin. N. Am. 2012, 26, 275–291. [Google Scholar] [CrossRef]
- de Souza, W.; de Carvalho, T.U.; Barrias, E.S. 18—Ultrastructure of Trypanosoma cruzi and its interaction with host cells. In American Trypanosomiasis Chagas Disease, 2nd ed.; Telleria, J., Tibayrenc, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 401–427. [Google Scholar] [CrossRef]
- Carlier, Y.; Sosa-Estani, S.; Luquetti, A.O.; Buekens, P. Congenital Chagas disease: An update. Mem. Inst. Oswaldo Cruz 2015, 110, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Molina, J.A.; Molina, I. Chagas disease. Lancet 2018, 391, 82–94. [Google Scholar] [CrossRef]
- Díaz-Chiguer, D.L.; Márquez-Navarroa, A.; Nogueda-Torres, B.; León-Ávila, G.L.; Pérez-Villanueva, J.; Hernández-Campos, A.; Castillo, R.; Ambrosio, J.R.; Nieto-Menesesa, R.; Yépez-Mulia, L.; et al. In vitro and in vivo trypanocidal activity of some benzimidazole derivatives against two strains of Trypanosoma cruzi. Acta Trop. 2012, 122, 108–112. [Google Scholar] [CrossRef]
- Echavarría, N.G.; Echeverría, L.E.; Stewart, M.; Gallego, C.; Saldarriaga, C. Chagas Disease: Chronic Chagas Cardiomyopathy. Curr. Probl. Cardiol. 2021, 46, 100507. [Google Scholar] [CrossRef]
- Yoshioka, K.; Manne-Goehler, J.; Maguire, J.H.; Reich, M.R. Access to Chagas disease treatment in the United States after the regulatory approval of benznidazole. PLoS Negl. Trop. Dis. 2020, 14, e0008398. [Google Scholar] [CrossRef]
- Pérez-Molina, J.A.; Crespillo-Andújar, C.; Bosch-Nicolau, P.; Molina, I. Trypanocidal Treatment of Chagas Disease. Enferm. Infecc. Microbiol. Clin. 2021, 39, 458–470. [Google Scholar] [CrossRef]
- Sánchez-Sancho, F.; Campillo, N.E.; Páez, J.A. Chagas disease: Progress and new perspectives. Curr. Med. Chem. 2010, 17, 423–452. [Google Scholar] [CrossRef] [PubMed]
- Maya, J.D.; Orellana, M.; Ferreira, J.; Kemmerling, U.; López-Muñoz, R.; Morello, A. Chagas disease: Present status of pathogenic mechanisms and chemotherapy. Biol. Res. 2010, 43, 323–331. [Google Scholar] [CrossRef]
- Apt, W. 31-Treatment of Chagas disease. In American Trypanosomiasis Chagas Disease, 2nd ed.; Telleria, J., Tibayrenc, M., Eds.; Elsevier: London, UK, 2017; pp. 751–771. [Google Scholar] [CrossRef]
- Bestetti, B.B.; Bocchi, E.A. Shorter treatment in chronic Chagas disease: A new promise? Lancet Infect. Dis. 2024, 24, 333–334. [Google Scholar] [CrossRef]
- Pérez-Ayala, A.; Pérez-Molina, J.A.; Norman, F.; Navarro, M.; Monge-Maillo, B.; Díaz-Menéndez, M.; Peris-García, J.; Flores, M.; Cañavate, C.; López-Vélez, R. Chagas disease in Latin American migrants: A Spanish challenge. Clin. Microbiol. Infect. 2011, 17, 1108–1113. [Google Scholar] [CrossRef] [PubMed]
- Jackson, Y.; Alirol, E.; Getaz, L.; Wolff, H.; Combescure, C.; Chappuis, F. Tolerance and safety of nifurtimox in patients with chronic Chagas disease. Clin. Infect. Dis. 2010, 51, e69–e75. [Google Scholar] [CrossRef]
- Crespillo-Andújar, C.; Chamorro-Tojeiro, S.; Norman, F.; Monge-Maillo, B.; López-Vélez, R.; Pérez-Molina, J.A. Toxicity of nifurtimox as second-line treatment after benznidazole intolerance in patients with chronic Chagas disease: When available options fail. Clin. Microbiol. Infect. 2018, 24, 1344.e1–1344.e4. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Theander, T.G.; Christensen, S.B.; Hviid, L.; Zhai, L.; Kharazmil, A. Licochalcone A, a new antimalarial agent, inhibits in vitro growth of the human malaria parasite Plasmodium falciparum and protects mice from P. yoelii infection. Antimicrob. Agents Chemother. 1994, 38, 1470–1475. [Google Scholar] [CrossRef]
- Gupta, S.; Shivahare, R.; Korthikunta, V.; Singh, R.; Gupta, S.; Tadigoppula, N. Synthesis and biological evaluation of chalcones as potential antileishmanial agents. Eur. J. Med. Chem. 2014, 81, 359–366. [Google Scholar] [CrossRef]
- Bai, X.-G.; Xu, C.-L.; Zhao, S.-S.; He, H.-W.; Wang, Y.-C.; Wang, J.-X. Synthesis and Cytotoxic Evaluation of Alkoxylated Chalcones. Molecules 2014, 11, 17256–17278. [Google Scholar] [CrossRef]
- Borsari, C.; Santarem, N.; Torrado, J.; Olías, A.I.; Corral, M.J.; Baptista, C.; Gul, S.; Wolf, M.; Kuzikov, M.; Ellinger, B.; et al. Methoxylated 2′-hydroxychalcones as antiparasitic hit compounds. Eur. J. Med. Chem. 2017, 126, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
- Sandjo, L.P.; de Moraes, H.M.; Kuete, V.; Kamdoum, B.C.; Ngadjui, B.T.; Steindel, M. Individual and combined antiparasitic effect of six plant metabolites against Leishmania amazonensis and Trypanosoma cruzi. Bioorg. Med. Chem. Lett. 2016, 26, 1772–1775. [Google Scholar] [CrossRef] [PubMed]
- McGrath, M.E.; Eakin, A.E.; Engel, J.C.; McKerrow, J.H.; Craik, C.S.; Fletterick, R.J. The crystal structure of cruzian: A therapeutic target for Chagas’ disease. J. Mol. Biol. 1995, 247, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Sajid, M.; Robertson, S.A.; Brinen, L.S.; McKerrow, J.H. Cruzain the path from target validation to the clinic. In Cysteine Proteases of Pathogenic Organisms; Mark, W., Robinson, M.W., Dalton, J.P., Eds.; Landes Bioscience and Springer Science Business Media, LLC: New York, NY, USA, 2011; pp. 100–115. [Google Scholar]
- Borchhardt, D.M.; Mascarello, A.; Chiaradia, D.L.; Nunes, R.J.; Oliva, G.; Yunes, R.A.; Andricopulo, A.D. Biochemical Evaluation of a Series of Synthetic Chalcone and Hydrazide Derivatives as Novel Inhibitors of Cruzain from Trypanosoma cruzi. J. Braz. Chem. Soc. 2010, 21, 142–150. [Google Scholar] [CrossRef]
- Almeida de Brito, D.H.; Almeida-Neto, F.W.Q.; Ribeiro, L.R.; Magalhães, E.P.; Bezerra de Menezes, R.R.P.P.; Sampaio, T.L.; Martins, A.M.C.; Bandeira, P.N.; Marinho, M.M.; Marinho, E.S.; et al. Synthesis, structural and spectroscopic analysis, and antiproliferative activity of chalcone derivate (E)-1-(4-aminophenyl)-3-(benzo[b]thiophen-2-yl)prop-2-en-1-one in Trypanosoma cruzi. J. Mol. Struct. 2022, 1253, 132197. [Google Scholar] [CrossRef]
- Böhm, H.-J.; Banner, D.; Bendels, S.; Kansy, V.; Kuhn, B.; Müller, K.; Obst-Sander, U.; Stahl, M. Fluorine in Medicinal Chemistry. ChemBioChem 2004, 5, 637–643. [Google Scholar] [CrossRef]
- Eslava-Gonzalez, I.; Valdés, H.; Ramírez-Apan, M.T.; Hernandez-Ortega, S.; Zermeño-Ortega, M.R.; Alcives Avila-Sorrosa, A.; Morales-Morales, D. Synthesis of theophylline-based iridium(I) N-heterocyclic carbene complexes including fluorinated-thiophenolate ligands. Preliminary evaluation of their in vitro anticancer activity. Inorg. Chim. Acta 2020, 507, 119588. [Google Scholar] [CrossRef]
- Avila-Sorrosa, A.; Bando-Vázquez, A.Y.; Alvarez-Alvarez, V.; Suarez-Contreras, E.; Nieto-Meneses, R.; Nogueda-Torres, B.; Vargas-Díaz, M.E.; Díaz-Cedillo, F.; Reyes-Martínez, R.; Hernandez-Ortega, S.; et al. Synthesis, characterization and preliminary in vitro trypanocidal activity of N-arylfluorinated hydroxylated-Schiff bases. J. Mol. Struct. 2020, 1218, 128520. [Google Scholar] [CrossRef]
- Linares-Anaya, O.; Avila-Sorrosa, A.; Díaz-Cedillo, F.; Gil-Ruiz, L.Á.; Correa-Basurto, J.; Salazar-Mendoza, D.; Orjuela, A.L.; Alí-Torres, J.; Ramírez-Apan, M.T.; Morales-Morales, D. Synthesis, Characterization, and Preliminary In Vitro Cytotoxic Evaluation of a Series of 2-Substituted Benzo [d] [1,3] Azoles. Molecules 2021, 26, 2780. [Google Scholar] [CrossRef]
- Avila-Sorrosa, A.; Hernández-González, J.I.; Reyes-Arellano, A.; Toscano, R.A.; Reyes-Martínez, R.; Pioquinto-Mendoza, J.R.; Morales-Morales, D. Synthesis, structural characterization and biological activity of fluorinated Schiff-bases of the type [C6H4-1-(OH)-3-(CHNArF)]. J. Mol. Struct. 2015, 1085, 249–257. [Google Scholar] [CrossRef]
- Avila-Sorrosa, A.; Tapia-Alvarado, J.D.; Nogueda-Torres, B.; Chacón-Vargas, K.F.; Díaz-Cedillo, F.; Vargas-Díaz, M.E.; Morales-Morales, D. Facile Synthesis of a Series of Non-Symmetric Thioethers Including a Benzothiazole Moiety and Their Use as Efficient In Vitro anti-Trypanosoma cruzi Agents. Molecules 2019, 24, 3077. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.; Chen, M.; Blom, J.; Theander, T.G.; Christensen, S.B.; Kharazmi, A. The antileishmanial activity of novel oxygenated chalcones and their mechanism of action. J. Antimicrob. Chemother. 1999, 43, 793–803. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Christensen, S.B.; Zhai, L.; Rasmussen, M.H.; Theander, T.G.; Frøkjaer, S.; Steffansen, B.; Davidsen, J.; Kharazmi, A. The novel oxygenated chalcones, 2,4-dimethoxy-4′ -butoxychalcone, exhibits potent activity against human malaria parasite Plasmodium falciparum in vitro and rodent parasites Plasmodium berghei and Plasmodium yoelii in vivo. J. Infect. Dis. 1997, 176, 1327–1333. [Google Scholar] [CrossRef] [PubMed]
- Armarego, W.L.; Chai, C.L.L. Purification of Laboratory Chemicals, 5th ed.; Butteworth-Heinemann: Oxford, UK, 2003; imprint of Elsevier Science, Great Britain. [Google Scholar]
- Begum, N.A.; Roy, N.; Laskar, R.A.; Roy, K. Mosquito larvicidal studies of some chalcone analogues and their derived products: Structure–activity relationship analysis. Med. Chem. Res. 2011, 20, 184–191. [Google Scholar] [CrossRef]
- Liu, M.; Wilairat, P.; Go, M.-L. Antimalarial alkoxylated and hydroxylated chalones: Structure-activity relationship analysis. J. Med. Chem. 2001, 44, 4443–4452. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, M.; Feng, S.; Gong, C.; Zhou, Y.; Xing, L.; He, B.; Wu, Y.; Xue, W. Design, synthesis and biological activity of chalcone derivatives containing pyridazine. Arab. J. Chem. 2023, 16, 104852. [Google Scholar] [CrossRef]
- Liu, M.; Wilairat, P.; Croft, S.L.; Tan, A.L.-C.; Go, M.-L. Structure–activity relationships of antileishmanial and antimalarial chalcones. Bioorg. Med. Chem. 2003, 11, 2729–2738. [Google Scholar] [CrossRef]
- Batovska, D.; Parushev, S.; Slavova, A.; Bankova, V.; Tsvetkova, I.; Ninova, M.; Najdenski, H. Study on the substituents’ effects of a series of synthetic chalcones against the yeast Candida albicans. Eur. J. Med. Chem. 2007, 42, 87–92. [Google Scholar] [CrossRef]
- Ducki, S.; Rennison, D.; Woo, M.; Kendall, A.; Chabert, J.F.D.; McGown, A.T.; Lawrence, N.J. Combretastatin-like chalcones as inhibitors of microtubule polymerization. Part 1: Synthesis and biological evaluation of antivascular activity. Bioorg. Med. Chem. 2009, 17, 7698–7710. [Google Scholar] [CrossRef]
- Edwards, M.L.; Stemerick, D.M.; Sunkara, P.S. Chalcones: A new class of antimitotic agents. J. Med. Chem. 1990, 33, 1948–1954. [Google Scholar] [CrossRef]
- Roman, B.I.; De Ryck, T.; Dierickx, L.; Vanhoecke, B.W.A.; Katritzky, A.R.; Bracke, M.; Stevens, C.V. Exploration of the SAR of anti-invasive chalcones: Synthesis and biological evaluation of conformationally restricted analogues. Bioorg. Med. Chem. 2012, 20, 4812–4819. [Google Scholar] [CrossRef] [PubMed]
- NORMA Oficial Mexicana NOM-062-ZOO-1999. Technical Specifications for the Production, Care, and Use of Laboratory Animals. Available online: https://www.gob.mx/cms/uploads/attachment/file/203498/NOM-062-ZOO-1999_220801.pdf (accessed on 1 September 2024).
- Brener, Z. Therapeutic activity and criterion of cure on mice experimentally infected with Trypanosoma cruzi. Rev. Inst. Med. Trop Sao Paulo 1962, 4, 389–396. [Google Scholar] [PubMed]
- Wu, X.F.; Neumann, H.; Spannenberg, A.; Schulz, T.; Jiao, H.J.; Beller, M. Development of a general palladium-catalyzed carbonylative Heck reaction of aryl halides. J. Am. Chem. Soc. 2010, 132, 14596–14602. [Google Scholar] [CrossRef] [PubMed]
- Selepe, M.A.; Heerden, F.R.V. Application of the Suzuki-Miyaura reaction in the synthesis of flavonoids. Molecules 2013, 18, 4739–4765. [Google Scholar] [CrossRef]
- Chinchilla, R.; Carmen Nájera, C. The Sonogashira Reaction: A booming methodology in synthetic organic chemistry. Chem. Rev. 2007, 107, 874–922. [Google Scholar] [CrossRef]
- Posternak, A.G.; Garlyauskayte, R.Y.; Yagupolskii, L.M. BTISA-catalyzed Friedel–Crafts bimolecular cyclization of cinnamic acid under superelectrophilic solvation conditions. J. Fluor. Chem. 2010, 131, 274–277. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, S.; Tripathi, V.D.; Srivastava, S. Synthesis of chalcones and flavanones using Julia-Kocienski olefination. Tetrahedron 2010, 66, 9445–9449. [Google Scholar] [CrossRef]
- Sharma, A.; Chakravarti, B.; Gupt, M.P.; Siddiqui, J.A.; Konwar, R.; Tripathi, R.P. Synthesis and anti-breast cancer activity of biphenyl based chalcones. Bioorg. Med. Chem. 2010, 18, 4711–4720. [Google Scholar] [CrossRef]
- Sharma, A.; Saraswat, A. Overview on cumulative synthetic approaches for chalcone based functionalized scaffolds. J. Indian Chem. Soc. 2021, 98, 100028. [Google Scholar] [CrossRef]
- Pretsch, E.; Buhlmann, P.; Badertscher, M. Structure Determination of Organic Compounds, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Jansen, A.M.; Roque, A.L.R.; Xavier, S.C.C. Trypanosoma cruzi enzootic cycle: General aspects, domestic and synanthropic hosts and reservoirs. In American Trypanosomiasis Chagas Disease, 2nd ed.; Telleria, J., Tibayrenc, M., Eds.; Elsevier: London, UK, 2017; pp. 265–282. [Google Scholar] [CrossRef]
- Bakchi, B.; Krishna, A.D.; Sreecharan, E.; Ganesh, V.B.J.; Niharika, M.; Maharshi, S.; Puttagunta, S.B.; Sigalapalli, D.K.; Bhandare, R.R.; Shaik, A.B. An overview on applications of SwissADME web tool in the design and development of anticancer, antitubercular and antimicrobial agents: A medicinal chemist’s perspective. J. Mol. Struct. 2022, 1259, 132712. [Google Scholar] [CrossRef]
- Kim, G.B.; Seo, J.I.; Gye, M.C.; Hye Hyun Yoo, H.H. Isosorbide, a versatile green chemical: Elucidating its ADME properties for safe use. Ecotoxicol. Environ. Saf. 2024, 272, 116051. [Google Scholar] [CrossRef] [PubMed]
- Rath, M.; Wellnitz, J.; Martin, H.-J.; Melo-Filho, C.; Hochuli, J.E.; Silva, G.M.; Beasley, J.-M.; Travis, M.; Sessions, Z.L.; Popov, K.I.; et al. Pharmacokinetics Profiler (PhaKinPro): Model Development, Validation, and Implementation as a Web Tool for Triaging Compounds with Undesired Pharmacokinetics Profiles. J. Med. Chem. 2024, 67, 6508–6518. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Mannhold, R.; Poda, G.I.; Ostermann, C.; Tetko, I.V. Calculation of molecular lipophilicity: State-of-the-art and comparison of log P methods on more than 96,000 compounds. J. Pharm. Sci. 2009, 98, 861–893. [Google Scholar] [CrossRef]
Compound | % Lysis T. cruzi NINOA | % Lysis T. cruzi INC-5 |
---|---|---|
1 | 22.03 ± 0.58 | 53.85 ± 0.00 |
2 | 61.02 ± 0.58 | 73.08 ± 1.15 |
3 | 47.46 ± 0.58 | 60.00 ± 1.15 |
4 | 75.42 ± 0.58 | 56.15 ± 1.00 |
5 | 45.76 ± 1.15 | 56.15 ± 0.00 |
6 | 41.53 ± 1.00 | 36.92 ± 2.08 |
7 | 18.64 ± 2.65 | 25.38 ± 0.58 |
8 | 72.03 ± 0.00 | 68.46 ± 1.53 |
Bnz | 77.92 ± 1.15 | 73.81 ± 1.53 |
Nfx | 90.91 ± 1.15 | 79.76 ± 1.15 |
Compound | CL50 (μM) Bloodstream Trypomastigotes T. cruzi | |
---|---|---|
T. cruzi NINOA | T. cruzi INC-5 | |
1 | 30 ± 0.58 | 510 ± 1.00 |
2 | 120 ± 1.53 | 330 ± 1.15 |
3 | 470± 0.58 | 220 ± 0.58 |
4 | 390 ± 0.00 | 190 ± 1.00 |
5 | 710 ± 1.53 | 260 ± 0.58 |
6 | 100 ± 0.00 | 40 ± 0.58 |
7 | 660 ± 1.00 | 310 ± 0.58 |
8 | 300 ± 0.58 | 140 ± 0.58 |
Bnz | 220 ± 1.00 | 310 ± 1.00 |
Nfx | 161 ± 1.00 | 250 ± 1.00 |
Comp. | MW (g/mol) | Log P | Ha | Hd | Rb | Log Sw | Lipinski Rule | HIA (%) | BBB | Fuh | Tcl | LD50 Rat (mol/kg) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 224.25 | 3.45 | 2 | 1 | 3 | −4.38 | 0 | 94.046 | 0.165 | 0.02 | 0.149 | 2.129 |
2 | 258.70 | 3.41 | 2 | 1 | 3 | −5.00 | 0 | 92.637 | 0.139 | 0.013 | −0.176 | 2.335 |
3 | 303.15 | 3.48 | 2 | 1 | 3 | −5.22 | 0 | 92.570 | 0.137 | 0.008 | −0.198 | 2.347 |
4 | 242.25 | 3.17 | 3 | 1 | 3 | −4.66 | 0 | 93.706 | 0.012 | 0.058 | 0.036 | 2.228 |
5 | 298.33 | 3.34 | 4 | 0 | 6 | −5.33 | 0 | 97.969 | 0.053 | 0.0 | 0.232 | 2.218 |
6 | 332.78 | 3.88 | 4 | 0 | 6 | −5.92 | 0 | 96.561 | 0.026 | 0.0 | 0.369 | 2.393 |
7 | 377.23 | 3.97 | 4 | 0 | 6 | −6.13 | 0 | 96.494 | 0.025 | 0.0 | 0.348 | 2.407 |
8 | 316.32 | 3.67 | 5 | 0 | 6 | −5.60 | 0 | 97.629 | −0.1 | 0.053 | 0.119 | 2.405 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avila-Sorrosa, A.; Laurel-Gochicoa, D.J.; Vargas-Díaz, M.E.; Nogueda-Torres, B.; Gómez-Escobedo, R.I. Easy Synthesis and In Vitro Evaluation of Halogenated Chalcones against Trypanosoma cruzi. Chemistry 2024, 6, 1201-1216. https://doi.org/10.3390/chemistry6050069
Avila-Sorrosa A, Laurel-Gochicoa DJ, Vargas-Díaz ME, Nogueda-Torres B, Gómez-Escobedo RI. Easy Synthesis and In Vitro Evaluation of Halogenated Chalcones against Trypanosoma cruzi. Chemistry. 2024; 6(5):1201-1216. https://doi.org/10.3390/chemistry6050069
Chicago/Turabian StyleAvila-Sorrosa, Alcives, Diana J. Laurel-Gochicoa, María Elena Vargas-Díaz, Benjamín Nogueda-Torres, and Rogelio I. Gómez-Escobedo. 2024. "Easy Synthesis and In Vitro Evaluation of Halogenated Chalcones against Trypanosoma cruzi" Chemistry 6, no. 5: 1201-1216. https://doi.org/10.3390/chemistry6050069
APA StyleAvila-Sorrosa, A., Laurel-Gochicoa, D. J., Vargas-Díaz, M. E., Nogueda-Torres, B., & Gómez-Escobedo, R. I. (2024). Easy Synthesis and In Vitro Evaluation of Halogenated Chalcones against Trypanosoma cruzi. Chemistry, 6(5), 1201-1216. https://doi.org/10.3390/chemistry6050069