Facile Synthesis of Zeolite NaX from Natural Attapulgite Clay for Pb2+ Adsorption
Abstract
:1. Introduction
2. Experimental
2.1. Pretreatment Process of Natural Attapulgite Clay
2.2. Synthesis of NaX Zeolite
2.3. Heavy Metal Adsorption Experiment
2.4. Characterization
3. Results and Discussion
3.1. Analysis of the Composition, Structure and Morphology of the Clay and the Obtained Zeolite NaX
3.2. Effect of Different Reaction Parameters on the Structure of Zeolite NaX
3.3. Adsorption Performance of Zeolite NaX
3.4. Adsorption Isotherm and Adsorption Kinetic Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, M.Y.; Nong, S.Y.; Zhao, Y.T.; Riaz, M.S.; Xiao, Y.; Molokeev, M.S.; Huang, F.Q. Renewable P-type zeolite for superior absorption of heavy metals: Isotherms, kinetics, and mechanism. Sci. Total Environ. 2020, 726, 138535–138540. [Google Scholar] [CrossRef] [PubMed]
- Qasem, N.A.A.; Mohammed, R.H.; Lawal, D.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. npj Clean Water 2021, 4, 36–42. [Google Scholar] [CrossRef]
- Wei, E.; Wang, K.; Muhammad, Y.; Chen, S.; Dong, D.; Wei, Y.Z.; Fujita, T. Preparation and conversion mechanism of different geopolymer-based zeolite microspheres and their adsorption properties for Pb2+. Sep. Purif. Technol. 2022, 282, 119971–119980. [Google Scholar] [CrossRef]
- Azizi, D.; Ibsaine, F.; Dionne, J.; Pasquier, L.C.; Coudert, L.; Blais, J.F. Microporous and macroporous materials state-of-the-art of the technologies in zeolitization of aluminosilicate bearing residues from mining and metallurgical industries: A comprehensive review. Micropor. Mesopor. Mater. 2021, 318, 111029–111045. [Google Scholar] [CrossRef]
- Tran-Nguyen, P.L.; Ly, K.-P.; Thanh, L.H.V.; Angkawijaya, A.E.; Santoso, S.P.; Tran, N.P.D.; Tsai, M.L.; Ju, Y.H. Facile synthesis of zeolite NaX using rice husk ash without pretreatment. J. Taiwan Inst. Chem. E 2021, 123, 338–345. [Google Scholar] [CrossRef]
- Wang, L.; Liu, J.; Lin, C.; Shang, H.; Yang, J.; Li, L.; Li, J. Effects of different alkali metal cations in FAU zeolites on the separation performance of CO2/N2O. Chem. Eng. J. 2022, 431, 134257–134266. [Google Scholar] [CrossRef]
- Mokrzycki, J.; Fedyna, M.; Marzec, M.; Panek, R.; Szerement, J.; Marcińska-Mazur, L.; Jarosz, R.; Bajda, T.; Franus, W.; Mierzwa-Hersztek, M. The influence of zeolite X ion-exchangeable forms and impregnation with copper nitrate on the adsorption of phosphate ions from aqueous solutions. J. Water Process. Eng. 2022, 50, 103299–103308. [Google Scholar] [CrossRef]
- Han, L.; Wang, X.; Wu, B.; Zhu, S.; Wang, J.; Zhang, Y. In-situ synthesis of zeolite X in foam geopolymer as a CO2 adsorbent. J. Clean. Prod. 2022, 372, 133591–133598. [Google Scholar] [CrossRef]
- Li, X.; Han, H.; Xu, W.; Hwang, S.J.; Shi, Z.; Lu, P.; Bhan, A.; Tsapatsis, M. Acid catalysis over low-silica faujasite zeolites. J. Am. Chem. Soc. 2022, 144, 9324–9329. [Google Scholar] [CrossRef]
- Hartanto, D.; Kurniawati, R.; Pambudi, A.B.; Utomo, W.P.; Loon, W.; Nur, H. One-pot non-template synthesis of hierarchical ZSM-5 from kaolin source. Solid State Sci. 2019, 87, 150–154. [Google Scholar] [CrossRef]
- Ma, Y.; Yan, C.; Alshameri, A.; Qiu, X.; Zhou, C.; Li, D. Synthesis and characterization of 13X zeolite from low-grade natural kaolin. Adv. Powder Technol. 2014, 25, 495–499. [Google Scholar] [CrossRef]
- Yue, Y.Y.; Gao, X.X.; Liu, T.; Liu, H.Y.; Wang, T.H.; Yuan, P.; Zhu, H.B.; Bai, Z.S.; Bao, X.J. Template free synthesis of hierarchical porous zeolite Beta with natural kaolin clay as alumina source. Micropor. Mesopor. Mater. 2020, 293, 109772–109811. [Google Scholar] [CrossRef]
- Tang, L.J.; Xie, X.Z.; Huang, Y.X.; Pan, Y.M.; Mi, J.X. Phase diagram for hydrothermal alkali activation of kaolin and quartz: Optimal digestion for the synthesis of zeolites. Mater. Chem. Phys. 2022, 290, 126570–126580. [Google Scholar] [CrossRef]
- Chen, S.; Guan, D.D.; Zhang, Y.; Wang, Z.; Jiang, N.Z. Composition and kinetic study on template- and solvent-free synthesis of ZSM-5 using leached illite clay. Micropor. Mesopor. Mater. 2019, 285, 170–177. [Google Scholar] [CrossRef]
- Han, S.Y.; Liu, Y.; Yin, C.R.; Jiang, N.Z. Fast synthesis of submicron ZSM-zeolite from leached illite clay using a seed-assisted method. Micropor. Mesopor. Mater. 2019, 275, 223–228. [Google Scholar] [CrossRef]
- Liu, Y.; Han, S.Y.; Guan, D.D.; Chen, S.; Wu, Y.H.; Yang, Y.; Jiang, N.Z. Rapid green synthesis of ZSM-5 zeolite from leached illite clay. Micropor. Mesopor. Mater. 2019, 280, 324–330. [Google Scholar] [CrossRef]
- Li, X.; Han, S.; Guan, D.; Jiang, N.; Park, S.E. Rapid direct synthesis of nano-H-ZSM-5 from leached illite via solid-like-state conversion-based crystallization. Appl. Clay Sci. 2021, 203, 106028–106039. [Google Scholar] [CrossRef]
- Chen, C.; Park, D.W.; Ahn, W.S. CO2 capture using zeolite 13X prepared from bentonite. Appl. Surf. Sci. 2014, 292, 63–67. [Google Scholar] [CrossRef]
- Hosseini, M.S.H.; Eslami, F.; Karimzadeh, R. Organic contaminants removal from industrial wastewater by CTAB treated synthetic zeolite Y. J. Environ. Manag. 2019, 233, 785–792. [Google Scholar] [CrossRef]
- Hamidi, R.; Khoshbin, R.; Karimzadeh, R. A new approach for synthesis of well-crystallized Y zeolite from bentonite and rice husk ash used in Ni-Mo/Al2O3-Y hybrid nanocatalyst for hydrocracking of heavy oil. Adv. Powder Technol. 2021, 32, 524–534. [Google Scholar] [CrossRef]
- Yao, G.Y.; Lei, J.J.; Zhang, X.Y.; Sun, Z.M.; Zheng, S.L. One-step hydrothermal synthesis of zeolite X powder from natural low-grade diatomite. Materials 2018, 11, 906. [Google Scholar] [CrossRef]
- Moreno-Maroto, J.M.; Alonso-Azcárate, J.; Martínez-García, C.; Romero, M.; López-Delgado, A.; Cotes-Palomino, T. Zeolitization of diatomite residues by a simple method. Appl. Sci. 2022, 12, 10977. [Google Scholar] [CrossRef]
- Sun, L.M.; Wu, J.S.; Wang, J.S.; Yu, G.; Liu, J.C.; Du, Y.C.; Li, Y.L.; Li, H.Y. Controlled synthesis of zeolite adsorbent from low-grade diatomite: A case study of self-assembled sodalite microspheres. J. Environ. Sci. 2020, 91, 92–104. [Google Scholar] [CrossRef]
- Stafin, G.; Grzebielucka, E.C.; Antunes, S.R.M.; Borges, C.P.F.; Souza, D.C.F.D. Synthesis of zeolites from residual diatomite using a microwave-assisted hydrothermal method. Waste Manag. 2021, 126, 853–860. [Google Scholar] [CrossRef]
- Zhu, T.; Zhang, X.; Han, Y.; Liu, T.; Wang, B.; Zhang, Z. Preparation of zeolite X by the aluminum residue from coal fly ash for the adsorption of volatile organic compounds. Front. Chem. 2019, 7, 341–349. [Google Scholar] [CrossRef]
- Makgabutlane, B.; Nthunya, L.N.; Nxumalo, E.N.; Musyoka, N.M.; Mhlanga, S.D. Microwave irradiation-assisted synthesis of zeolites from coal fly ash: An optimization study for a sustainable and efficient production process. ACS Omega 2020, 5, 25000–25008. [Google Scholar] [CrossRef]
- Boycheva, S.; Zgureva, D.; Lazarova, H.; Popova, M. Comparative studies of carbon capture onto coal fly ash zeolites Na-X and Na-Ca-X. Chemosphere 2021, 271, 129505–129514. [Google Scholar] [CrossRef]
- Wu, Y.; Liang, G.; Zhao, X.; Wang, H.; Qu, Z. Flexible textural design of ZSM-5 zeolite adsorbent from coal fly ash via solvent-free method for toluene elimination. J. Environ. Chem. 2023, 11, 109589. [Google Scholar] [CrossRef]
- Li, X.Y.; Jiang, Y.; Liu, X.Q.; Shi, L.Y.; Zhang, D.Y.; Sun, L.B. Direct synthesis of zeolites from a natural clay, attapulgite. ACS Sustain. Chem. Eng. 2017, 5, 6124–6130. [Google Scholar] [CrossRef]
- Wu, M.; Jiang, W.B.; Jiang, J.L.; Zou, Y.Q.; Shi, Y.Y. Synthesis of ZSM-5 zeolites using palygorskite as raw material under solvent-free conditions. Bull. Mater. Sci. 2020, 43, 289–298. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Diao, J.; Qiang, M.; Chen, Z. Synthesis and photocatalytic activity of hierarchical Zn-ZSM-5 structures. Catalysts 2021, 11, 797. [Google Scholar] [CrossRef]
- Xie, Q.Q.; Chen, T.H.; Zhou, H.; Xu, X.C.; Xu, H.F.; Ji, J.F.; Lu, H.Y.; Balsam, W. Mechanism of palygorskite formation in the Red Clay Formation on the Chinese Loess Plateau, northwest China. Geoderma 2013, 192, 39–49. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, L.; Liu, Q.; Zhang, B.; Qiao, Z.; Teppen, B.J. Genesis of palygorskite in the neogene baiyanghe formation in Yangtaiwatan basin, northwest China, based on the mineralogical characteristics and occurrence of enriched trace elements and ree. Clays Clay Miner. 2021, 69, 23–27. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, A. From structure evolution of palygorskite to functional material: A review. Micropor. Mesopor. Mater. 2022, 333, 111765–111783. [Google Scholar] [CrossRef]
- He, Y.; Tang, S.; Yin, S.; Li, S. Research progress on green synthesis of various high-purity zeolites from natural material-kaolin. J. Clean. Prod. 2021, 306, 127248–127266. [Google Scholar] [CrossRef]
- Isawi, H. Using Zeolite/Polyvinyl alcohol/sodium alginate nanocomposite beads for removal of some heavy metals from wastewater. Arab. J. Chem. 2020, 13, 5691–5716. [Google Scholar] [CrossRef]
- Hamoudi, S.A.; Khelifa, N.; Loubna, N.; Hemidouche, S.; Boudjemaa, A.; Boucheffa, Y. Removal of Pb2+ and Cd2+ by adsorption onto Y zeolite and its selectivity of retention in an actual contaminated effluent. Colloid Polym. Sci. 2023, 301, 631–645. [Google Scholar] [CrossRef]
- Mayta-Armas, A.F.; Yamerson, C.H.; Jemina, P.; Yéssica, B.; Noemi-Raquel, C.; Juan, A. Enhanced removal of As(V) and Pb(II) from drinking and irrigating water effluents using hydrothermally synthesized zeolite 5A. Water 2023, 15, 1892. [Google Scholar] [CrossRef]
- Abdelrahman, E.A.; Ahmed; Subaihi, A.; Ahmed, M.; Mohammed, A.A.; Faisal, K.A.; Hany, M.Y. Facile fabrication of novel analcime/sodium aluminum silicate hydrate and zeolite Y/faujasite mesoporous nanocomposites for efficient removal of Cu(II) and Pb(II) ions from aqueous media. J. Mater. Res. Technol. 2020, 9, 7900–7914. [Google Scholar] [CrossRef]
- Wangi, G.M.; Olupot, P.W.; Byaruhanga, J.; Kulabako, R. Characterization of natural zeolite and determination of its ion-exchange potential for selected metal ions in water. Environ. Process. 2023, 10, 53. [Google Scholar] [CrossRef]
- Zendelska, A.; Golomeova, M.; Golomeov, B.; Krstev, B. Removal of zinc ions from acid aqueous solutions and acid mine drainage using zeolite-bearing tuff. Mine Water Environ. 2019, 38, 187–196. [Google Scholar] [CrossRef]
Component | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O | Na2O |
---|---|---|---|---|---|---|---|
Content (wt%) | 43.9 | 15.5 | 4.90 | 10.1 | 3.38 | 2.25 | 19.1 |
Langmuir Constants | Freundlich Constants | ||||
---|---|---|---|---|---|
Qmax | KL | R2 | Qmax | KF | R2 |
114.58 | 5.3 | 0.922 | 117.32 | 24.15 | 0.756 |
Pseudo-First-Order | Pseudo-Second-Order Kinetic | ||||
---|---|---|---|---|---|
Qe | K1 | R2 | Qe | K2 | R2 |
102.695 | 14.36 | 0.875 | 98.814 | 0.038 | 0.998 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, M.; Shi, Z.; Tong, Y.; Zhang, K. Facile Synthesis of Zeolite NaX from Natural Attapulgite Clay for Pb2+ Adsorption. Chemistry 2024, 6, 1217-1229. https://doi.org/10.3390/chemistry6050070
Feng M, Shi Z, Tong Y, Zhang K. Facile Synthesis of Zeolite NaX from Natural Attapulgite Clay for Pb2+ Adsorption. Chemistry. 2024; 6(5):1217-1229. https://doi.org/10.3390/chemistry6050070
Chicago/Turabian StyleFeng, Min, Zhiming Shi, Yongchun Tong, and Kewei Zhang. 2024. "Facile Synthesis of Zeolite NaX from Natural Attapulgite Clay for Pb2+ Adsorption" Chemistry 6, no. 5: 1217-1229. https://doi.org/10.3390/chemistry6050070
APA StyleFeng, M., Shi, Z., Tong, Y., & Zhang, K. (2024). Facile Synthesis of Zeolite NaX from Natural Attapulgite Clay for Pb2+ Adsorption. Chemistry, 6(5), 1217-1229. https://doi.org/10.3390/chemistry6050070