Acyl Transfer Reactions of 2,4-Dinitrophenyl Furoates: Comparative Effects of Nucleophiles and Non-Leaving Groups
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Kinetic Studies
2.3. Product Studies
2.4. Control Experiments
3. Results and Discussion
3.1. Kinetic Analysis
3.2. Mechanism of Acyl Transfer Reactions of Compound 1
3.3. Effect of Non-Leaving Group
3.4. Effect of Nucleophile on the Acyl Transfer Reactions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirsch, J.F.; Clewell, W.; Simon, A. Multiple structure reactivity correlations. Alkaline hydrolyses of acyl and aryl-substituted phenyl benzoates. J. Org. Chem. 1968, 33, 127–132. [Google Scholar] [CrossRef]
- Kirsch, J.F.; Kline, A. Acyl substituent effects in the general base catalyzed ammonolysis reactions of esters. J. Am. Chem. Soc. 1969, 91, 1841–1847. [Google Scholar] [CrossRef]
- Chaw, Z.S.; Fischer, A.; Happer, D.A.R. Rates of base-catalysed hydrolysis of substituted aryl benzoates. J. Chem. Soc. B Phys. Org. 1971, 1818–1819. [Google Scholar] [CrossRef]
- Satterthwait, A.C.; Jencks, W.P. Mechanism of the aminolysis of acetate esters. J. Am. Chem. Soc. 1974, 96, 7018–7031. [Google Scholar] [CrossRef]
- Jencks, W.P. Ingold Lecture. How does a reaction choose its mechanism? Chem. Soc. Rev. 1981, 10, 345–375. [Google Scholar] [CrossRef]
- Jencks, W.P. A primer for the Bema Hapothle. An empirical approach to the characterization of changing transition-state structures. Chem. Rev. 1985, 85, 511–527. [Google Scholar] [CrossRef]
- Giles, J.R.M.; Roberts, B.P. An electron spin resonance study of the generation and reactions of borane radical anions in solution. J. Chem. Soc. Perkin Trans. 2 1983, 743–755. [Google Scholar] [CrossRef]
- Castro, E.A.; Steinfort, G.B. Kinetics and mechanism of the pyridinolysis of 2,4-dinitrophenyl p-nitrobenzoate. J. Chem. Soc. Perkin Trans. 2 1983, 453–457. [Google Scholar] [CrossRef]
- Castro, E.A.; Santander, C.L. Nonlinear Broensted-type plot in the pyridinolysis of 2,4-dinitrophenyl benzoate in aqueous ethanol. J. Org. Chem. 1985, 50, 3595–3600. [Google Scholar] [CrossRef]
- Castro, E.A.; Valdivia, J.L. Linear free-energy relationship in the pyridinolysis of 2,4-dinitrophenyl p-chlorobenzoate in aqueous ethanol solution. J. Org. Chem. 1986, 51, 1668–1672. [Google Scholar] [CrossRef]
- Castro, E.A. Kinetics and Mechanisms of Reactions of Thiol, Thiono, and Dithio Analogues of Carboxylic Esters with Nucleophiles. Chem. Rev. 1999, 99, 3505–3524. [Google Scholar] [CrossRef] [PubMed]
- Castro, E.A.; Aliaga, M.; Campodónico, P.; Santos, J.G. Kinetics and Mechanism of the Aminolysis of Methyl 4-Nitrophenyl, Methyl 2,4-Dinitrophenyl, and Phenyl 2,4-Dinitrophenyl Carbonates. J. Org. Chem. 2002, 67, 8911–8916. [Google Scholar] [CrossRef] [PubMed]
- Castro, E.A.; Bessolo, J.; Aguayo, R.; Santos, J.G. Kinetic Investigation of the Reactions of S-4-Nitrophenyl 4-Substituted Thiobenzoates with Secondary Alicyclic Amines in Aqueous Ethanol. J. Org. Chem. 2 2003, 68, 8157–8161. [Google Scholar] [CrossRef] [PubMed]
- Castro, E.A.; Vivanco, M.; Aguayo, R.; Santos, J.G. Kinetics and Mechanism of the Pyridinolysis of S-4-Nitrophenyl 4-Substituted Thiobenzoates in Aqueous Ethanol. J. Org. Chem. 2004, 69, 5399–5404. [Google Scholar] [CrossRef]
- Castro, E.A.; Aguayo, R.; Bessolo, J.; Santos, J.G. Kinetics and Mechanism of the Reactions of S-2,4-Dinitrophenyl 4-Substituted Thiobenzoates with Secondary Alicyclic Amines. J. Org. Chem. 2005, 70, 7788–7791. [Google Scholar] [CrossRef]
- Castro, E.A.; Aguayo, R.; Bessolo, J.; Santos, J.G. Kinetics and Mechanism of the Pyridinolysis of S-2,4-Dinitrophenyl 4-Substituted Thiobenzoates. J. Org. Chem. 2005, 70, 3530–3536. [Google Scholar] [CrossRef]
- Campodónico, P.R.; Fuentealba, P.; Castro, E.A.; Santos, J.G.; Contreras, R. Relationships between the Electrophilicity Index and Experimental Rate Coefficients for the Aminolysis of Thiolcarbonates and Dithiocarbonates. J. Org. Chem. 2005, 70, 1754–1760. [Google Scholar] [CrossRef]
- Campodónico, P.R.; Ormazábal-Toledo, R.; Aizman, A.; Contreras, R. Permanent group effect on nucleofugality in aryl benzoates. Chem. Phys. Lett. 2010, 498, 221–225. [Google Scholar] [CrossRef]
- Nummert, V.; Piirsalu, M.; Mäemets, V.; Koppel, I. Kinetic Study of Hydrolysis of Benzoates. Part XXV. Ortho Substituent Effect in Alkaline Hydrolysis of Phenyl Esters of Substituted Benzoic Acids in Water. Collect. Czechoslov. Chem. Commun. 2006, 71, 107–128. [Google Scholar] [CrossRef]
- Nummert, V.; Piirsalu, M.; Koppel, I.A. Prediction of ortho substituent effect in alkaline hydrolysis of phenyl esters of substituted benzoic acids in aqueous acetonitrile. Cent. Eur. J. Chem. 2013, 11, 1964–1975. [Google Scholar] [CrossRef]
- Um, I.-H.; Jeon, J.-S.; Kwon, D.-S. A Mechanistic Study on Acyl Transfer Reactions of Aryl Substituted Benzoates Between Aryloxides. Bull. Korean Chem. Soc. 1991, 12, 406–410. [Google Scholar] [CrossRef]
- Kwon, D.-S.; Park, J.-Y.; Um, I.-H. The Effect of Polarizability on Reactivity of 4-Nitrophenyl Benzoate and Its Sulfur Containing Analogues with Anionic Nucleophiles in Ethanol. Bull. Korean Chem. Soc. 1994, 15, 860–864. [Google Scholar] [CrossRef]
- Um, I.-H.; Oh, S.-J.; Kwon, D.-S. The effect of solvent on the α-effect: Abnormal nucleophilic reactivity of substituted acetophenone oximate anions in aqueous DMSO. Tetrahedron Lett. 1995, 36, 6903–6906. [Google Scholar] [CrossRef]
- Um, I.-H.; Oh, S.-J.; Kwon, D.-S. A Mechanistic Study on Reactions of Aryl Benzoates with Ethoxide, Aryloxides and Acetophenone oximates in Absolute Ethanol. Bull. Korean Chem. Soc. 1996, 17, 802–807. [Google Scholar] [CrossRef]
- Um, I.-H.; Hong, Y.-J.; Kwon, D.-S. Acid dissociation constants of phenols and reaction mechanism for the reactions of substituted phenyl benzoates with phenoxide anions in absolute ethanol. Tetrahedron 1997, 53, 5073–5082. [Google Scholar] [CrossRef]
- Um, I.-H.; Min, J.-S.; Lee, H.-W. Structure-reactivity correlations in the reaction of 2,4-dinitrophenyl X-substituted benzoates with alicyclic secondary amines. Can. J. Chem. 1999, 77, 659–666. [Google Scholar] [CrossRef]
- Um, I.-H.; Min, J.-S.; Ahn, J.-A.; Hahn, H.-J. Effect of Acyl Substituents on the Reaction Mechanism for Aminolyses of 4-Nitrophenyl X-Substituted Benzoates. J. Org. Chem. 2000, 65, 5659–5663. [Google Scholar] [CrossRef]
- Um, I.-H.; Han, H.-J.; Ahn, J.-A.; Kang, S.; Buncel, E. Reinterpretation of Curved Hammett Plots in Reaction of Nucleophiles with Aryl Benzoates: Change in Rate-Determining Step or Mechanism versus Ground-State Stabilization. J. Org. Chem. 2002, 67, 8475–8480. [Google Scholar] [CrossRef]
- Um, I.-H.; Kim, K.-H.; Park, H.-R.; Fujio, M.; Tsuno, Y. Effects of Amine Nature and Nonleaving Group Substituents on Rate and Mechanism in Aminolyses of 2,4-Dinitrophenyl X-Substituted Benzoates. J. Org. Chem. 2004, 69, 3937–3942. [Google Scholar] [CrossRef]
- Um, I.-H.; Hwang, S.-J.; Baek, M.-H.; Park, E.J. Modification of Both the Electrophilic Center and Substituents on the Nonleaving Group in Pyridinolysis of O-4-Nitrophenyl Benzoate and Thionobenzoates. J. Org. Chem. 2006, 71, 9191–9197. [Google Scholar] [CrossRef]
- Min, S.-W.; Seo, J.-A.; Um, I.-H. Kinetics and Mechanism of Nucleophilic Displacement Reactions of Y-Substituted Phenyl Benzoates with Z-Substituted Phenoxides. Bull. Korean Chem. Soc. 2009, 30, 2403–2407. [Google Scholar] [CrossRef]
- Um, I.-H.; Im, L.-R.; Kim, E.-H.; Shin, J.H. Nonlinear Hammett plots in pyridinolysis of 2,4-dinitrophenyl X-substituted benzoates: Change in RDS versus resonance contribution. Org. Biomol. Chem. 2010, 8, 3801–3806. [Google Scholar] [CrossRef] [PubMed]
- Um, I.-H.; Bae, A.R. Aminolysis of Y-Substituted-phenyl 2-Methoxybenzoates in Acetonitrile: Effect of the o-Methoxy Group on Reactivity and Reaction Mechanism. J. Org. Chem. 2011, 76, 7510–7515. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.-S.; Um, I.-H. Kinetics and Reaction Mechanism for Aminolysis of Benzyl 4-Pyridyl Carbonate in H2O: Effect of Modification of Nucleofuge from 2-Pyridyloxide to 4-Pyridyloxide on Reactivity and Reaction Mechanism. Bull. Korean Chem. Soc. 2012, 33, 2269–2273. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Kim, M.-Y.; Um, I.-H. Kinetic Study on Nucleophilic Displacement Reactions of Y-Substituted-Phenyl 2-Methylbenzoates with Cyclic Secondary Amines in Acetonitrile: Effects of Modification of 2-MeO in Benzoyl Moiety by 2-Me on Reactivity and Reaction Mechanism. Bull. Korean Chem. Soc. 2013, 34, 3795–3799. [Google Scholar] [CrossRef]
- Um, I.-H.; Bae, A.-R.; Um, T.-I. Comparison of Aminolysis of 2-Pyridyl and 4-Pyridyl X-Substituted Benzoates in Acetonitrile: Evidence for a Concerted Mechanism Involving a Cyclic Transition State. J. Org. Chem. 2014, 79, 1206–1212. [Google Scholar] [CrossRef]
- Giri, S.K.; Kartha, K.P.R. Acyl transfer reactions of carbohydrates, alcohols, phenols, thiols and thiophenols under green reaction conditions. RSC Adv. 2015, 5, 11687–11696. [Google Scholar] [CrossRef]
- Keydel, T.; Link, A. Synthetic Approaches, Properties, and Applications of Acylals in Preparative and Medicinal Chemistry. Molecules 2024, 29, 4451. [Google Scholar] [CrossRef]
- Pyun, S.Y.; Paik, K.C.; Han, M.S.; Hong, S.T.; Cho, B.R. Reactions of 2,4-dinitrophenyl 5-substituted-2-thiophenecarboxylate promoted by 4-ZCHO/4-ZCHOH in 20 mol% DMSO(aq). Effects of leaving group and nucleophile on the acyl transfer reactions. Bull. Korean Chem. Soc. 2023, 44, 952–957. [Google Scholar] [CrossRef]
- Pyun, S.Y.; Paik, K.C.; Han, M.S.; Cho, B.R. A Kinetic Study on the Nucleophilic Substitution Reaction of 2,4-dinitrophenyl 5-substituted-2-furoates Under R2NH/R2NH2+ in 20 mol% DMSO(aq). Effects of Nonleaving Group and Leaving Group on the Reaction Mechanism. J. Korean Chem. Soc. 2023, 67, 191–198. [Google Scholar] [CrossRef]
- Jencks, W.P.; Gilchrist, M. Nonlinear structure-reactivity correlations. The reactivity of nucleophilic reagents toward esters. J. Am. Chem. Soc. 1968, 90, 2622–2637. [Google Scholar] [CrossRef]
- Gresser, M.J.; Jencks, W.P. Ester aminolysis. Structure-reactivity relationships and the rate-determining step in the aminolysis of substituted diphenyl carbonates. J. Am. Chem. Soc. 1977, 99, 6963–6970. [Google Scholar] [CrossRef]
- Gresser, M.J.; Jencks, W.P. Ester aminolysis. Partitioning of the tetrahedral addition intermediate, T.+-., and the relative leaving ability of nitrogen and oxygen. J. Am. Chem. Soc. 1977, 99, 6970–6980. [Google Scholar] [CrossRef]
- Castro, E.A.; Ureta, C. Kinetics and mechanism of the reactions of 2,4-dinitrophenyl acetate with secondary alicyclic amines. Different nucleofugalities of alicyclic amines and pyridines from a tetrahedral intermediate. J. Org. Chem. 1990, 55, 1676–1679. [Google Scholar] [CrossRef]
- Castro, E.A.; Ibanez, F.; Santos, J.G.; Ureta, C. Kinetics and mechanism of the aminolysis of phenyl thionoacetate in aqueous solution. J. Org. Chem. 1993, 58, 4908–4912. [Google Scholar] [CrossRef]
- Castro, E.A.; Ibáñez, F.; Santos, J.G.; Ureta, C. Kinetics and mechanism of the aminolysis of phenyl dithioacetate in aqueous solution. J. Chem. Soc. Perkin Trans. 2 1991, 1919–1924. [Google Scholar] [CrossRef]
- Um, I.-H.; Akhtar, K.; Shin, Y.-H.; Han, J.-Y. Aminolyses of Aryl Diphenylphosphinates and Diphenylphosphinothioates: Effect of Modification of Electrophilic Center from PO to PS. J. Org. Chem. 2007, 72, 3823–3829. [Google Scholar] [CrossRef]
- Chapman, N.; Shoeter, J. (Eds.) Advances in Linear Free Energy Relationships; Plenum Press: London, UK, 1972. [Google Scholar]
- Pyun, S.Y.; Paik, K.C.; Han, M.S.; Cho, B.R. Reactions of 2,4-Dinitrophenyl 5-substituted-2-thiophenecarboxylates with R2NH/R2NH2+ in 20 Mol % DMSO(aq). Effects of 5-Thienyl Substituent and Leaving Group on the Reaction Mechanism. Bull. Korean Chem. Soc. 2019, 40, 983–990. [Google Scholar] [CrossRef]
- Tang, D.; Xu, J. Thermal Effect in the Microwave-assisted Aminolysis of Benzoates and Amines. Curr. Microw. Chem. 2020, 7, 74–82. [Google Scholar] [CrossRef]
- Guo, L.; Liu, F.; Wang, L.; Yuan, H.; Feng, L.; Kürti, L.; Gao, H. Cascade Approach to Highly Functionalized Biaryls by a Nucleophilic Aromatic Substitution with Arylhydroxylamines. Org. Lett. 2019, 21, 2894–2898. [Google Scholar] [CrossRef]
- Zhang, G.; Xu, J. A four-step cascade reaction involving O[1,3] sigmatropic shift and Smiles rearrangements as key steps. New J. Chem. 2022, 46, 9322–9330. [Google Scholar] [CrossRef]
- Won, J.-E.; Kim, H.-K.; Kim, J.-J.; Yim, H.-S.; Kim, M.-J.; Kang, S.-B.; Chung, H.-A.; Lee, S.-G.; Yoon, Y.-J. Effective esterification of carboxylic acids using (6-oxo-6H-pyridazin-1-yl)phosphoric acid diethyl ester as novel coupling agents. Tetrahedron 2007, 63, 12720–12730. [Google Scholar] [CrossRef]
- Liu, F.; Sohail, A.; Ablajan, K. Metal-Free Oxidative Formation of Aryl Esters by Catalytic Coupling of Acyl and Sulfonyl Chlorides with Arylboronic Acids. J. Org. Chem. 2024, 89, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.K.; Yu, J.S.; Lee, H.-J. Determination of aromaticity indices of thiophene and furan by nuclear magnetic resonance spectroscopic analysis of their phenyl esters. J. Heterocycl. Chem. 2002, 39, 1207–1217. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Y.; Zhao, Y.; Wang, S.; Hu, W.; Li, J.; Wang, Z.; Yang, F.; Zhao, J. Ynamide-Mediated Intermolecular Esterification. J. Org. Chem. 2020, 85, 6188–6194. [Google Scholar] [CrossRef]
- Zu, W.; Day, C.; Wei, L.; Jia, X.; Xu, L. Dual aminoquinolate diarylboron and nickel catalysed metallaphotoredox platform for carbon–oxygen bond construction. Chem. Commun. 2020, 56, 8273–8276. [Google Scholar] [CrossRef]
- Liao, W., Jr.; Lin, S.-Y.; Kuo, Y.-S.; Liang, C.-F. Site-Selective Acylation of Phenols Mediated by a Thioacid Surrogate through Sodium Thiosulfate Catalysis. Org. Lett. 2022, 24, 4207–4211. [Google Scholar] [CrossRef]
- pKa values were calculated using Advanced Chemistry Development software v.11.02 (1994–2015 ACD/Labs). Available online: https://www.acdlabs.com/products/percepta-platform/physchem-suite/pka (accessed on 30 August 2024).
- Sober, H.A. Handbook of Biochemistry, Selected Data for Molecular Biology; Chemical Rubber Company: Cleaveland, OH, USA, 1968. [Google Scholar]
- Lowry, T.H.; Richardson, K.S. Mechanism and Theory in Organic Chemistry; Harper and Row: New York, NY, USA, 1987. [Google Scholar]
- Shames, S.L.; Byers, L.D. Acyl substituent effects on rates of acyl transfer to thiolate, hydroxide, and oxy dianions. J. Am. Chem. Soc. 1981, 103, 6170–6177. [Google Scholar] [CrossRef]
- Knowlton, R.C.; Byers, L.D. Acyl substituent effects on ester aminolysis. J. Org. Chem. 1988, 53, 3862–3865. [Google Scholar] [CrossRef]
- Williams, A. Effective charge and Leffler’s index as mechanistic tools for reactions in solution. Acc. Chem. Res. 1984, 17, 425–430. [Google Scholar] [CrossRef]
- Um, I.-H.; Chun, S.-E.; Kwon, D.-S. The Effect of Polarizability on Rate and Reaction Mechanism: Reactions of S-Aryl Substituted Thiobenzoates with HO- and Aryloxide Ions. Bull. Korean Chem. Soc. 1991, 12, 510–514. [Google Scholar] [CrossRef]
- Um, I.-H.; Kwon, H.; Kwon, D.-S.; Park, J.-Y. Addition-Elimination Mechanism of Aminolyses of 4-Nitrophenyl Benzoate and Its Sulfur Analog. J. Chem. Res.-S 1995, 1, 301. [Google Scholar]
- Buncel, E.; Um, I.H.; Hoz, S. Solvent-independent transition-state structure for acyl-transfer reactions. A novel strategy for construction of a Broensted correlation. J. Am. Chem. Soc. 1989, 111, 971–975. [Google Scholar] [CrossRef]
- Bernasconi, C.F. Techniques of Organic Chemistry, 4th ed.; Wiley: New York, NY, USA, 1986; Volume 6. [Google Scholar]
- Albert, A. Physical Methods in Heterocyclic Chemistry; Academic Press: London, UK, 1963; Volume 1, p. 44. [Google Scholar]
- Bernardi, F.; Bottoni, A.; Venturini, A. An ab initio SCF-MO study of the aromaticity of some cyclic compounds. J. Mol. Struct. Theochem 1988, 163, 173–189. [Google Scholar] [CrossRef]
- Oh, H.K.; Woo, S.Y.; Shin, C.H.; Lee, I. Aminolysis of aryl dithio-2-thiophenates and dithio-2-furoates in acetonitrile. Int. J. Chem. Kinet. 1998, 30, 849–857. [Google Scholar] [CrossRef]
- Um, I.-H.; Hong, J.-Y.; Kim, J.-J.; Chae, O.-M.; Bae, S.-K. Regioselectivity and the Nature of the Reaction Mechanism in Nucleophilic Substitution Reactions of 2,4-Dinitrophenyl X-Substituted Benzenesulfonates with Primary Amines. J. Org. Chem. 2003, 68, 5180–5185. [Google Scholar] [CrossRef]
- Um, I.-H.; Chun, S.-M.; Chae, O.-M.; Fujio, M.; Tsuno, Y. Effect of Amine Nature on Reaction Rate and Mechanism in Nucleophilic Substitution Reactions of 2,4-Dinitrophenyl X-Substituted Benzenesulfonates with Alicyclic Secondary Amines. J. Org. Chem. 2004, 69, 3166–3172. [Google Scholar] [CrossRef]
- Um, I.-H.; Hong, J.-Y.; Seok, J.-A. Effect of Substituent on Regioselectivity and Reaction Mechanism in Aminolysis of 2,4-Dinitrophenyl X-Substituted Benzenesulfonates. J. Org. Chem. 2005, 70, 1438–1444. [Google Scholar] [CrossRef]
kN, M−1 s−1 e, f When X is | |||||
---|---|---|---|---|---|
Z/X c | pKa d | H (1a) | OCH3 (1b) | CH3 (1c) | Br (1d) |
4-CN | 7.95 | 0.738 | 0.0595 | 0.149 | 2.71 |
4-Cl | 9.38 | 17.6 | 1.10 | 3.13 | 54.9 |
H | 9.95 | 27.1 | 1.58 | 6.07 | 105 |
4-CH3 | 10.19 | 44.3 | 3.56 | 10.6 | 171 |
4-OCH3 | 10.20 | 68.5 | 6.35 | 14.0 | 236 |
Z | 4-OCH3 | 4-CH3 | H | 4-Cl | 4-CN |
---|---|---|---|---|---|
pKa a | 10.20 | 10.19 | 9.95 | 9.38 | 7.95 |
βacyl | −2.24 ± 0.18 | −2.33 ± 0.20 | −2.50 ± 0.29 | −2.40 ± 0.29 | −2.34 ± 0.19 |
X | OCH3 | CH3 | H | Br |
---|---|---|---|---|
pKa a(X-ArCOOH) | 3.55 b | 3.41 | 3.16 | 2.84 |
βnuc | 0.81 ± 0.09 | 0.84 ± 0.05 | 0.81 ± 0.07 | 0.82 ± 0.05 |
Z | 4-OCH3 | 4-CH3 | H | 4-Cl | 4-CN |
---|---|---|---|---|---|
pKa a | 10.20 | 10.19 | 9.95 | 9.38 | 7.95 |
ρ(x) | 3.18 ± 0.28 | 3.32 ± 0.30 | 3.56 ± 0.43 | 3.41 ± 0.44 | 3.33 ± 0.30 |
Ar | Furyl (1) | Thienyl a (2) |
---|---|---|
Relative rate b | 2.3 | 1 |
βacyl | −2.50 ± 0.29 | −2.92 ± 0.37 |
βnuc b | 0.81 ± 0.07 | 0.78 ± 0.05 |
|βlg| b | - | 0.44 |
ρ(x) | 3.56 ± 0.43 | 3.39 ± 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pyun, S.-Y.; Hong, S.-T. Acyl Transfer Reactions of 2,4-Dinitrophenyl Furoates: Comparative Effects of Nucleophiles and Non-Leaving Groups. Chemistry 2024, 6, 1301-1311. https://doi.org/10.3390/chemistry6050075
Pyun S-Y, Hong S-T. Acyl Transfer Reactions of 2,4-Dinitrophenyl Furoates: Comparative Effects of Nucleophiles and Non-Leaving Groups. Chemistry. 2024; 6(5):1301-1311. https://doi.org/10.3390/chemistry6050075
Chicago/Turabian StylePyun, Sang-Yong, and Seung-Taek Hong. 2024. "Acyl Transfer Reactions of 2,4-Dinitrophenyl Furoates: Comparative Effects of Nucleophiles and Non-Leaving Groups" Chemistry 6, no. 5: 1301-1311. https://doi.org/10.3390/chemistry6050075
APA StylePyun, S. -Y., & Hong, S. -T. (2024). Acyl Transfer Reactions of 2,4-Dinitrophenyl Furoates: Comparative Effects of Nucleophiles and Non-Leaving Groups. Chemistry, 6(5), 1301-1311. https://doi.org/10.3390/chemistry6050075