FT-MIR Analysis of Water-Soluble Extracts during the Ripening of Sheep Milk Cheese with Different Phospholipid Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cheese Samples and Water-Soluble Extracts
2.2. FT-MIR Spectroscopy
2.3. Discriminant Analysis
2.3.1. Discrimination Model of Ripening Stage
2.3.2. Discrimination Model of Phospholipid Content
3. Results
3.1. Spectroscopic Study
3.1.1. Spectral Regions Related to Cheese Ripening
3.1.2. Spectral Regions Related to Phospholipids
3.2. Discriminant Analysis
3.2.1. Discrimination Model of Ripening/Storage Stage
3.2.2. Discrimination Model of Phospholipid Content
4. Discussion
4.1. Discrimination Model of Ripening/Storage Stage
4.2. Discrimination Model of Phospholipid Content
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kamal, M.; Karoui, R. Analytical methods coupled with chemometric tools for determining the authenticity and detecting the adulteration of dairy products: A review. Trends Food Sci. Technol. 2015, 46, 27–48. [Google Scholar] [CrossRef]
- Karoui, R.; Mazerolles, G.; Dufour, É. Spectroscopic techniques coupled with chemometric tools for structure and texture determinations in dairy products. Int. Dairy J. 2003, 13, 607–620. [Google Scholar] [CrossRef]
- De Marchi, M.; Penasa, M.; Zidi, A.; Manuelian, C.L. Invited review: Use of infrared technologies for the assessment of dairy products—Applications and perspectives. J. Dairy Sci. 2018, 101, 10589–10604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karoui, R.; De Baerdemaeker, J. A review of the analytical methods coupled with chemometric tools for the determination of the quality and identity of dairy products. Food Chem. 2007, 102, 621–640. [Google Scholar] [CrossRef]
- Pappas, C.S.; Tarantilis, P.A.; Moschopoulou, E.; Moatsou, G.; Kandarakis, I.; Polissiou, M.G. Identification and differentiation of goat and sheep milk based on diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) using cluster analysis. Food Chem. 2008, 106, 1271–1277. [Google Scholar] [CrossRef]
- Subramanian, A.; Harper, W.J.; Rodriguez-Saona, L.E. Rapid Prediction of Composition and Flavor Quality of Cheddar Cheese Using ATR-FTIR Spectroscopy. J. Food Sci. 2009, 74, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Saona, L.E.; Koca, N.; Harper, W.J.; Alvarez, V.B. Rapid Determination of Swiss Cheese Composition by Fourier Transform Infrared/Attenuated Total Reflectance Spectroscopy. J. Dairy Sci. 2006, 89, 1407–1412. [Google Scholar] [CrossRef] [Green Version]
- Karoui, R.; Mouazen, A.M.; Dufour, É.; Pillonel, L.; Picque, D.; Bosset, J.-O.; De Baerdemaeker, J. Mid-infrared spectrometry: A tool for the determination of chemical parameters in Emmental cheeses produced during winter. Lait 2006, 86, 83–97. [Google Scholar] [CrossRef] [Green Version]
- Karoui, R.; Mouazen, A.M.; Dufour, É.; Schoonheydt, R.; De Baerdemaeker, J. A comparison and joint use of VIS-NIR and MIR spectroscopic methods for the determination of some chemical parameters in soft cheeses at external and central zones: A preliminary study. Eur. Food Res. Technol. 2006, 223, 363–371. [Google Scholar] [CrossRef]
- Koca, N.; Rodriguez-Saona, L.E.; Harper, W.J.; Alvarez, V.B. Application of Fourier Transform Infrared Spectroscopy for Monitoring Short-Chain Free Fatty Acids in Swiss Cheese. J. Dairy Sci. 2007, 90, 3596–3603. [Google Scholar] [CrossRef]
- Subramanian, A.; Harper, W.J.; Rodriguez-Saona, L.E. Cheddar cheese classification based on flavor quality using a novel extraction method and Fourier transform infrared spectroscopy. J. Dairy Sci. 2009, 92, 87–94. [Google Scholar] [CrossRef]
- Kocauoglu-Vurma, N.A.; Eliardi, A.; Drake, M.A.; Rodriguez-Saona, L.E.; Harper, W.J. Rapid Profiling of Swiss Cheese by Attenuated Total Reflectance (ATR) Infrared Spectroscopy and Descriptive Sensory Analysis. J. Food Sci. 2009, 74, S232–S239. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, O.S.; Argyri, A.A.; Varzakis, E.E.; Tassou, C.C.; Chorianopoulos, N.G. Greek functional Feta cheese: Enhancing quality and safety using a Lactobacillus plantarum strain with probiotic potential. Food Microbiol. 2018, 74, 21–33. [Google Scholar] [CrossRef]
- Lerma-García, M.J.; Gori, A.; Cerretani, L.; Simó-Alfonso, E.F.; Caboni, M.F. Classification of Pecorino cheeses produced in Italy according to their ripening time and manufacturing technique using Fourier transform infrared spectroscopy. J. Dairy Sci. 2010, 93, 4490–4496. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.M.; Frøst, M.B.; Viereck, N. Spectroscopic characterization of low- and non-fat cream cheeses. Int. Dairy J. 2010, 20, 32–39. [Google Scholar] [CrossRef]
- Guerzoni, M.E.; Vannini, L.; Lopez, C.C.; Lanciotti, R.; Suzzi, G.; Gianotti, A. Effect of High Pressure Homogenization on Microbial and Chemico-Physical Characteristics of Goat Cheeses. J. Dairy Sci. 1999, 82, 851–862. [Google Scholar] [CrossRef]
- Karoui, R.; Dufour, É.; Pillonel, L.; Picque, D.; Cattenoz, D.; Bosset, J.-O. Determining the geographic origin of Emmental cheeses produced during winter and summer using a technique based on the concatenation of MIR and fluorescence spectroscopic data. Eur. Food Res. Technol. 2004, 219, 184–189. [Google Scholar] [CrossRef]
- Karoui, R.; Dufour, É.; Pillonel, L.; Picque, D.; Cattenoz, T.; Bosset, J.-O. Fluorescence and infrared spectroscopies: A tool for the determination of the geographic origin of Emmental cheeses manufactured during summer. Lait 2004, 84, 359–374. [Google Scholar] [CrossRef] [Green Version]
- Karoui, R.; Mazerolles, G.; Bosset, J.-O.; De Baerdemaeker, J.; Dufour, E. Utilisation of mid-infrared spectroscopy for determination of the geographic origin of Gruyère PDO and L’Etivaz PDO Swiss cheeses. Food Chem. 2007, 105, 847–854. [Google Scholar] [CrossRef]
- Cevoli, C.; Gori, A.; Nocetti, M.; Cuibus, L.; Caboni, M.F.; Fabbri, A. FT-NIR and FT-MIR spectroscopy to discriminate competitors, non compliance and compliance grated Parmigiano Reggiano cheese. Food Res. Int. 2013, 52, 214–220. [Google Scholar] [CrossRef]
- Gori, A.; Maggio, R.M.; Cerretani, L.; Nocetti, M.; Caboni, M.F. Discrimination of grated cheeses by Fourier transform infrared spectroscopy coupled with chemometric techniques. Int. Dairy J. 2012, 23, 115–120. [Google Scholar] [CrossRef]
- Boubellouta, T.; Karoui, R.; Lebecque, A.; Dufour, E. Utilisation of attenuated total reflectance MIR and front-face fluorescence spectroscopies for the identification of Saint-Nectaire cheeses varying by manufacturing conditions. Eur. Food Res. Technol. 2010, 231, 873–882. [Google Scholar] [CrossRef]
- Cuibus, L.; Maggio, R.; Mureşan, V.; Diaconeasa, Z.; Fetea, F.; Socaciu, C. Preliminary Discrimination of Cheese Adulteration by FT-IR Spectroscopy. Bull. Univ. Agric. Sci. Veter. Med. Cluj-Napoca. Food Sci. Technol. 2014, 71, 142–146. [Google Scholar] [CrossRef] [Green Version]
- Leite, A.I.N.; Pereira, C.G.; Andrade, J.; Vicentini, N.M.; Bell, M.J.V.; Anjos, V. FTIR-ATR spectroscopy as a tool for the rapid detection of adulterations in butter cheeses. LWT 2019, 109, 63–69. [Google Scholar] [CrossRef]
- Sousa, M.J.; Ardö, Y.; McSweeney, P.L.H. Advances in the study of proteolysis during cheese ripening. Int. Dairy J. 2001, 11, 327–345. [Google Scholar] [CrossRef]
- McSweeney, P.L.H.; Sousa, M.J. Biochemical pathways for the production of flavour compounds in cheeses during ripening: A review. Lait 2000, 80, 293–324. [Google Scholar] [CrossRef]
- Subramanian, A.; Alvarez, V.B.; Harper, W.J.; Rodriguez-Saona, L.E. Monitoring amino acids, organic acids, and ripening changes in Cheddar cheese using Fourier-transform infrared spectroscopy. Int. Dairy J. 2011, 21, 434–440. [Google Scholar] [CrossRef]
- Martín-Del-Campo, S.T.; Picque, D.; Cosío-Ramírez, R.; Corrieu, G. Evaluation of Chemical Parameters in Soft Mold-Ripened Cheese During Ripening by Mid-Infrared Spectroscopy. J. Dairy Sci. 2007, 90, 3018–3027. [Google Scholar] [CrossRef]
- Baghdadi, F.; Aminifar, M.; Farhoodi, M.; Abadi, S.S.A. Study of macromolecular interactions in low-fat brined cheese modified with Zedu gum. Int. J. Dairy Technol. 2018, 71, 382–394. [Google Scholar] [CrossRef]
- Chen, M.; Irudayaraj, J.; McMahon, D.J. Examination of Full Fat and Reduced Fat Cheddar Cheese During Ripening by Fourier Transform Infrared Spectroscopy. J. Dairy Sci. 1998, 81, 2791–2797. [Google Scholar] [CrossRef]
- Lanciotti, R.; Vannini, L.; Lòpez, C.C.; Gobbetti, M.; Guerzoni, M.E. Evaluation of the ability of Yarrowia lipolytica to impart strain-dependent characteristics to cheese when used as a ripening adjunct. Int. J. Dairy Technol. 2005, 58, 89–99. [Google Scholar] [CrossRef]
- Dufour, É.; Mazerolles, G.; Devaux, M.F.; Duboz, G.; Duployer, M.H.; Riou, N. Phase transition of triglycerides during semi-hard cheese ripening. Int. Dairy J. 2000, 10, 81–93. [Google Scholar] [CrossRef]
- Duboz, G.; Riou, N.M.; Mazerolles, G.; Devaux, M.-F.; Duployer, M.-H.; Dufour, E. Infrared and fluorescence spectroscopy for monitoring protein structure and interaction changes during cheese ripening. Lait 2001, 81, 509–527. [Google Scholar] [CrossRef] [Green Version]
- Cattaneo, T.M.P.; Giardina, C.; Sinelli, N.; Riva, M.; Giangiacomo, R. Application of FT-NIR and FT-IR spectroscopy to study the shelf-life of Crescenza cheese. Int. Dairy J. 2005, 15, 693–700. [Google Scholar] [CrossRef]
- Martín-Del-Campo, S.T.; Picque, D.; Cosío-Ramírez, R.; Corrieu, G. Middle infrared spectroscopy characterization of ripening stages of Camembert-type cheeses. Int. Dairy J. 2007, 17, 835–845. [Google Scholar] [CrossRef]
- Del Campo, S.T.; Bonnaire, N.; Picque, D.; Corrieu, G. Initial studies into the characterisation of ripening stages of Emmental cheeses by mid-infrared spectroscopy. Dairy Sci. Technol. 2009, 89, 155–167. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Kocaoglu-Vurma, N.A.; Harper, W.J.; Rodriguez-Saona, L.E. Application of infrared microspectroscopy and multivariate analysis for monitoring the effect of adjunct cultures during Swiss cheese ripening. J. Dairy Sci. 2009, 92, 3575–3584. [Google Scholar] [CrossRef]
- Andrade, J.; Pereira, C.G.; Ranquine, T.; Azarias, C.A.; Bell, M.J.V.; Anjos, V.D.C.D. Long-Term Ripening Evaluation of Ewes’ Cheeses by Fourier-Transformed Infrared Spectroscopy under Real Industrial Conditions. J. Spectrosc. 2018, 2018, 1381864. [Google Scholar] [CrossRef]
- Rombaut, R.; Dewettinck, K. Properties, analysis and purification of milk polar lipids. Int. Dairy J. 2006, 16, 1362–1373. [Google Scholar] [CrossRef]
- Nilsson, Å.; Duan, R.-D.; Ohlsson, L. Digestion and Absorption of Milk Phospholipids in Newborns and Adults. Front. Nutr. 2021, 8, 724006. [Google Scholar] [CrossRef] [PubMed]
- Hauff, S.; Vetter, W. Quantification of fatty acids as methyl esters and phospholipids in cheese samples after separation of triacylglycerides and phospholipids. Anal. Chim. Acta 2009, 636, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Sakkas, L.; Alatini, E.; Moatsou, G. Use of sweet sheep buttermilk in the manufacture of reduced-fat sheep milk cheese. Int. Dairy J. 2021, 120, 105079. [Google Scholar] [CrossRef]
- Barth, A. The infrared absorption of amino acid side chains. Prog. Biophys. Mol. Biol. 2000, 74, 141–173. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; John Wiley and Sons: West Sussex, UK, 2001; pp. 229–338. [Google Scholar]
- Pappas, C.; Sakkas, L.; Moschopoulou, E.; Moatsou, G. Direct determination of lactulose in heat-treated milk using diffuse reflectance infrared Fourier transform spectroscopy and partial least squares regression. Int. J. Dairy Technol. 2015, 68, 448–453. [Google Scholar] [CrossRef]
- Moorthi, P.P.; Gunasekaran, S.; Ramkumaar, G.R. Vibrational spectroscopic studies of Isoleucine by quantum chemical calculations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 124, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Borah, B.; Devi, T.G. Vibrational study on the molecular interaction of L-Proline and Para-Aminobenzoic acid. J. Mol. Struct. 2020, 1203, 127396. [Google Scholar] [CrossRef]
- Mary, S.Y.; Ushakumari, L.; Harikumar, B.; Varghese, H.T.; Panicker, C.Y. FT-IR, FT-raman and SERS spectra of L-proline. J. Iran. Chem. Soc. 2009, 6, 138–144. [Google Scholar] [CrossRef]
- Olsztyńska-Janus, S.; Komorowska, M. Conformational changes of l-phenylalanine induced by near infrared radiation. ATR-FTIR studies. Struct. Chem. 2012, 23, 1399–1407. [Google Scholar] [CrossRef]
- Coates, J. Interpretation of infrared spectra: A practical approach. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley and Sons Ltd.: Chichester, UK, 2000; Volume 12, pp. 10815–10837. [Google Scholar]
- Nzai, J.M.; Proctor, A. Determination of phospholipids in vegetable oil by fourier transform infrared spectroscopy. J. Am. Oil Chem. Soc. 1998, 75, 1281–1289. [Google Scholar] [CrossRef]
- Ardö, Y.; Lilbæk, H.; Kristiansen, K.R.; Zakora, M.; Otte, J. Identification of large phosphopeptides from β-casein that characteristically accumulate during ripening of the semi-hard cheese Herrgård. Int. Dairy J. 2007, 17, 513–524. [Google Scholar] [CrossRef]
- Ali, A.H. Current knowledge of buttermilk: Composition, applications in the food industry, nutritional and beneficial health characteristics. Int. J. Dairy Technol. 2019, 72, 169–182. [Google Scholar] [CrossRef]
Wavenumber (cm−1) | Functional Group | Assignment | References |
---|---|---|---|
1720–1714 | >C=O (stretching) | carboxylic acids | [10] |
esters of fatty acids | [27] | ||
1679–1664 | Amide I: >C=O (stretching) | peptides, proteins | [8,11] |
CN3H5+ (asymmetric stretching) | arginine (side chain) | [43] | |
1605–1600 | NH3+ (asymmetric deformation) | free amino acids | [44] |
COO− (asymmetric stretching) | free amino acids | [44] | |
1549–1537 | Amide II: N-H (bending) and C-N (stretching) | peptides, proteins | [35,45] |
COO− (asymmetric stretching) | acidic amino acids (side chains) | [33] | |
NH3+ (symmetric deformation) | free amino acids | [44] | |
phenyl nucleus | aromatic amino acids | [45] | |
CH2 (scissoring) | isoleucine (side chain) | [46] | |
1467–1450 | CH (bending) | lipids | [30] |
CH2 (in-plane bending) | proline, glutamic acid (side chains) | [43] | |
C-N (stretching) | proline (side chain) | [43] | |
CH3 (asymmetric deformation) | amines | [13] | |
1433–1431 | COO− (symmetric stretching) | acidic amino acids | [11,27] |
CH (bending) | lipids | [30] | |
CH3 (asymmetric deformation) | amines | [13] | |
1397–1391 | COO− (symmetric stretching) | free amino acids and salts | [44] |
CH (bending) | amino acids (side chains) | [13] | |
CH3 (wagging) | isoleucine (side chain) | [46] | |
1163–1154 | C-O (stretching) | monosaccharides, ester link of lipids | [36] |
C-OH (stretching) | lactose | [36] | |
1128–1126 | C-O (stretching) | lipids | [30] |
organic acids | [8,10] | ||
C-C (stretching) | organic acids | [8,10] | |
S-O (asymmetric-symmetric stretching) | sulfur-oxy compounds | [37] | |
N-CH (in-plane bending) | proline (side chain) | [47] | |
NH2 (rocking/twisting) | amines | [13] | |
1096–1093 | C-O (stretching) | organic acids | [8,10] |
lactose | [35] | ||
C-C (stretching) | organic acids | [8,10] | |
OH (bending) | lactose | [35] | |
ring stretching | proline (side chain) | [48] | |
1052–1050 | C-O (stretching) | organic acids | [8,10] |
C-C (stretching) | organic acids | [8,10] | |
CH (in-plane bending) of phenyl ring | phenylalanine | [49] | |
1011–1004 | C-O (stretching) | organic acids | [8,10] |
C-C (stretching) | organic acids | [8,10] | |
skeletal breath mode | phenylalanine | [49] | |
C-N (stretching) | amines | [13] | |
932–929 | C-O (stretching) | organic acids | [8,10] |
C-C (stretching) | organic acids | [8,10] | |
OH (out-of-plane bending) | carboxylic acids | [10,12] | |
C-C (stretching) | proline (side chain) | [43] | |
C-N (stretching) | proline (side chain) | [43] | |
863–859 | CH (out-of-plane bending) of phenyl ring | phenylalanine | [37] |
777–776 | ring vibration | pyranose compounds (saccharides) | [44] |
Wavenumber (cm−1) | Functional Group | References |
---|---|---|
2978–2971 | CH3 (asymmetric stretching) | [50] |
2936–2920 | CH2 (asymmetric stretching) | [8,44] |
2883–2870 | CH3 (symmetric stretching) | [8,44] |
1720–1714 | C=O (stretching) | [51] |
1160–1150 | PO2− (symmetric stretching) | [51] |
P=O (stretching) | [44] | |
1129–1126 | P-O-C (asymmetric stretching) | [51] |
1096–1093 | P-O-C (asymmetric stretching) | [51] |
PO2− (symmetric stretching) | [13,44] | |
1053–1050 | P-O-C (asymmetric stretching) | [44,51] |
1014–998 | P-O-C (asymmetric stretching) | [44,51] |
932–929 | P-O (stretching) | [44] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakkas, L.; Pappas, C.S.; Moatsou, G. FT-MIR Analysis of Water-Soluble Extracts during the Ripening of Sheep Milk Cheese with Different Phospholipid Content. Dairy 2021, 2, 530-541. https://doi.org/10.3390/dairy2040042
Sakkas L, Pappas CS, Moatsou G. FT-MIR Analysis of Water-Soluble Extracts during the Ripening of Sheep Milk Cheese with Different Phospholipid Content. Dairy. 2021; 2(4):530-541. https://doi.org/10.3390/dairy2040042
Chicago/Turabian StyleSakkas, Lambros, Christos S. Pappas, and Golfo Moatsou. 2021. "FT-MIR Analysis of Water-Soluble Extracts during the Ripening of Sheep Milk Cheese with Different Phospholipid Content" Dairy 2, no. 4: 530-541. https://doi.org/10.3390/dairy2040042
APA StyleSakkas, L., Pappas, C. S., & Moatsou, G. (2021). FT-MIR Analysis of Water-Soluble Extracts during the Ripening of Sheep Milk Cheese with Different Phospholipid Content. Dairy, 2(4), 530-541. https://doi.org/10.3390/dairy2040042