2-Hydroxy-4-(Methylthio)-Mutanoate Supplementation Affects Production, Milk Fatty Acid Profile, and Blood Metabolites of High-Producing Holstein Cows
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cows and Experimental Design
2.2. Data and Sample Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lobley, G.E.; Wester, T.J.; Calder, A.G.; Parker, D.S.; Dibner, J.J.; Vázquez-Añón, M. Absorption of 2-Hydroxy-4-Methylthiobutyrate and Conversion to Methionine in Lambs. J. Dairy Sci. 2006, 89, 1072–1080. [Google Scholar] [CrossRef] [PubMed]
- Lobago, F.; Bekana, M.; Gustafsson, H.; Kindahl, H. Reproductive Performances of Dairy Cows in Smallholder Production System in Selalle, Central Ethiopia. Trop. Anim. Health Prod. 2006, 38, 333–342. [Google Scholar] [CrossRef]
- Chen, Z.H.; Broderick, G.A.; Luchini, N.D.; Sloan, B.K.; Devillard, E. Effect of Feeding Different Sources of Rumen-Protected Methionine on Milk Production and N-Utilization in Lactating Dairy Cows. J. Dairy Sci. 2011, 94, 1978–1988. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Oh, J.; Hristov, A.N.; Harvatine, K.; Vazquez-Anon, M.; Zanton, G.I. Effect of 2-Hydroxy-4-Methylthio-Butanoic Acid on Ruminal Fermentation, Bacterial Distribution, Digestibility, and Performance of Lactating Dairy Cows. J. Dairy Sci. 2015, 98, 1234–1247. [Google Scholar] [CrossRef] [PubMed]
- Zanton, G.I.; Bowman, G.R.; Vázquez-Añón, M.; Rode, L.M. Meta-Analysis of Lactation Performance in Dairy Cows Receiving Supplemental Dietary Methionine Sources or Postruminal Infusion of Methionine. J. Dairy Sci. 2014, 97, 7085–7101. [Google Scholar] [CrossRef]
- Feng, X.; White, R.R.; Tucker, H.A.; Hanigan, M.D. Meta-Analysis of 2-Hydroxy-4-Methylthio-Butanoic Acid Supplementation on Ruminal Fermentation, Milk Production, and Nutrient Digestibility. J. Dairy Sci. 2018, 101, 7182–7189. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, C.J.R.; Fernando, S.C.; Anderson, C.L.; Aluthge, N.D.; Castillo-Lopez, E.; Zanton, G.I.; Kononoff, P.J. The Effects of 2-Hydroxy-4-Methylthio-Butanoic Acid Supplementation on the Rumen Microbial Population and Duodenal Flow of Microbial Nitrogen. J. Dairy Sci. 2020, 103, 10161–10174. [Google Scholar] [CrossRef]
- Harvatine, K.J.; Boisclair, Y.R.; Bauman, D.E. Recent Advances in the Regulation of Milk Fat Synthesis. Animal 2009, 3, 40–54. [Google Scholar] [CrossRef]
- Baldin, M.; Zanton, G.I.; Harvatine, K.J. Effect of 2-Hydroxy-4-(Methylthio)Butanoate (HMTBa) on Risk of Biohydrogenation-Induced Milk Fat Depression. J. Dairy Sci. 2018, 101, 376–385. [Google Scholar] [CrossRef]
- Baldin, M.; Tucker, H.A.; Harvatine, K.J. Milk Fat Response and Milk Fat and Urine Biomarkers of Microbial Nitrogen Flow during Supplementation with 2-Hydroxy-4-(Methylthio)Butanoate. J. Dairy Sci. 2019, 102, 6157–6166. [Google Scholar] [CrossRef]
- Pitta, D.W.; Indugu, N.; Vecchiarelli, B.; Hennessy, M.; Baldin, M.; Harvatine, K.J. Effect of 2-Hydroxy-4-(Methylthio) Butanoate (HMTBa) Supplementation on Rumen Bacterial Populations in Dairy Cows When Exposed to Diets with Risk for Milk Fat Depression. J. Dairy Sci. 2020, 103, 2718–2730. [Google Scholar] [CrossRef]
- Copelin, J.E.; Firkins, J.L.; Socha, M.T.; Lee, C. Effects of Diet Fermentability and Supplementation of 2-Hydroxy-4-(Methylthio)-Butanoic Acid and Isoacids on Milk Fat Depression: 1. Production, Milk Fatty Acid Profile, and Nutrient Digestibility. J. Dairy Sci. 2021, 104, 1591–1603. [Google Scholar] [CrossRef]
- McCollum, M.Q.; Vázquez-Añón, M.; Dibner, J.J.; Webb, K.E. Absorption of 2-Hydroxy-4-(Methylthio)Butanoic Acid by Isolated Sheep Ruminal and Omasal Epithelia. J. Anim. Sci. 2000, 78, 1078–1083. [Google Scholar] [CrossRef] [PubMed]
- Koenig, K.M.; Rode, L.M.; Knight, C.D.; Vázquez-Añón, M. Rumen Degradation and Availability of Various Amounts of Liquid Methionine Hydroxy Analog in Lactating Dairy Cows. J. Dairy Sci. 2002, 85, 930–938. [Google Scholar] [CrossRef]
- Huber, J.T.; Emery, R.S.; Bergen, W.G.; Liesman, J.S.; Kung, L.; King, K.J.; Gardner, R.W.; Checketts, M. Influences of Methionine Hydroxy Analog on Milk and Milk Fat Production, Blood Serum Lipids, and Plasma Amino Acids. J. Dairy Sci. 1984, 67, 2525–2531. [Google Scholar] [CrossRef]
- Patton, R.A.; McCarthy, R.D.; Griel, L.C. Observations on Rumen Fluid, Blood Serum, and Milk Lipids of Cows Fed Methionine Hydroxy Analog. J. Dairy Sci. 1970, 53, 776–780. [Google Scholar] [CrossRef]
- Baldin, M.; Garcia, D.; Zanton, G.I.; Hao, F.; Patterson, A.D.; Harvatine, K.J. Effect of 2-Hydroxy-4-(Methylthio)Butanoate (HMTBa) on Milk Fat, Rumen Environment and Biohydrogenation, and Rumen Protozoa in Lactating Cows Fed Diets with Increased Risk for Milk Fat Depression. J. Dairy Sci. 2022, 105, 7446–7461. [Google Scholar] [CrossRef]
- NASEM (National Academies of Sciences, Engineering, and Medicine). Nutrient Requirements of Dairy Cattle: 2021, 8th ed.; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Ferguson, J.D.; Galligan, D.T.; Thomsen, N. Principal Descriptors of Body Condition Score in Holstein Cows. J. Dairy Sci. 1994, 77, 2695–2703. [Google Scholar] [CrossRef]
- Stokol, T.; Nydam, D.V. Effect of Anticoagulant and Storage Conditions on Bovine Nonesterified Fatty Acid and β-Hydroxybutyrate Concentrations in Blood. J. Dairy Sci. 2005, 88, 3139–3144. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Goering, H.K.; Van, P.J. Forage Fiber Analyses (Apparatus, Reagents, Procedures, and Some Applications); Agricultural Research Service, U.S. Department of Agriculture: Washington, DC, USA, 1970; Volume 379, pp. 1–20. [Google Scholar]
- NRC. Nutrient Requirements of Dairy Cattle: Seventh Revised Edition; National Research Council: Washington, DC, USA, 2001; ISBN 0309515211. [Google Scholar]
- Sjaunja, L.; Baevre, L.; Junkkarinen, L. A Nordic Proposal for an Energy Correctec Milk (ECM) Formula. In Proceedings of the 27th Session of the International Commission for Breeding and Productivity of Milk Animals, Paris, France, 2–6 July 1990. [Google Scholar]
- Rodríguez-Ruiz, J.; Belarbi, E.H.; Sánchez, J.L.G.; Alonso, D.L. Rapid Simultaneous Lipid Extraction and Transesterification for Fatty Acid Analyses. Biotechnol. Tech. 1998, 12, 689–691. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, N.K.; Bhadwal, M.S. Relationship of Somatic Cell Count and Mastitis: An Overview. Asian-Australas. J. Anim. Sci. 2011, 24, 429–438. [Google Scholar] [CrossRef]
- Koenig, K.M.; Rode, L.M.; Knight, C.D.; McCullough, P.R. Ruminal Escape, Gastrointestinal Absorption, and Response of Serum Methionine to Supplementation of Liquid Methionine Hydroxy Analog in Dairy Cows. J. Dairy Sci. 1999, 82, 355–361. [Google Scholar] [CrossRef]
- Johnson-VanWieringen, L.M.; Harrison, J.H.; Davidson, D.; Swlft, M.L.; Von Keyserlingk, M.A.G.; Vazquez-Anon, M.; Wright, D.; Chalupa, W. Effects of Rumen-Undegradable Protein Sources and Supplemental 2-Hydroxy-4-(Methylthio)-Butanoic Acid and Lysine-HCI on Lactation Performance in Dairy Cows. J. Dairy Sci. 2007, 90, 5176–5188. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Giallongo, F.; Hristov, A.N.; Lapierre, H.; Cassidy, T.W.; Heyler, K.S.; Varga, G.A.; Parys, C. Effect of Dietary Protein Level and Rumen-Protected Amino Acid Supplementation on Amino Acid Utilization for Milk Protein in Lactating Dairy Cows. J. Dairy Sci. 2015, 98, 1885–1902. [Google Scholar] [CrossRef] [PubMed]
- Klangnok, P.; Lounglawan, P.; Suksombat, W. Effects of Met Hydroxy Analog (MHA®) Supplementation of Dairy Cow’s Diets on Milk Yield and Milk Composition. J. Sci. Technol. 2011, 18, 99–108. [Google Scholar]
- Uchida, K.; Mandebvu, P.; Ballard, C.S.; Sniffen, C.J.; Carter, M.P. Effect of Feeding Methionine Supplements with Different Rumen Escape Values on Performance of High Producing Dairy Cows in Early Lactation. Anim. Feed Sci. Technol. 2003, 107, 1–14. [Google Scholar] [CrossRef]
- Noftsger, S.; St-Pierre, N.R.; Sylvester, J.T. Determination of Rumen Degradability and Ruminal Effects of Three Sources of Methionine in Lactating Cows. J. Dairy Sci. 2005, 88, 223–237. [Google Scholar] [CrossRef]
- Suksombat, W.; Nanon, A.; Klangnork, P.; Homkhao, J. Effects of Met Hydroxy Analog plus Mintrex® Dairy Supplementation on Performance of Lactating Dairy Cows. J. Anim. Vet. Adv. 2011, 10, 2814–2818. [Google Scholar]
- Lapierre, H.; Vázquez-Añón, M.; Parker, D.; Dubreuil, P.; Holtrop, G.; Lobley, G.E. Metabolism of 2-Hydroxy-4-(Methylthio)Butanoate (HMTBA) in Lactating Dairy Cows. J. Dairy Sci. 2011, 94, 1526–1535. [Google Scholar] [CrossRef]
- Vlaeminck, B.; Fievez, V.; Van Laar, H.; Demeyer, D. Rumen Odd and Branched Chain Fatty Acids in Relation to In Vitro Rumen Volatile Fatty Acid Productions and Dietary Characteristics of Incubated Substrates. J. Anim. Physiol. Anim. Nutr. 2004, 88, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, K.; Hao, X.; Xin, H. The Relationships between Odd- and Branched-Chain Fatty Acids to Ruminal Fermentation Parameters and Bacterial Populations with Different Dietary Ratios of Forage and Concentrate. J. Anim. Physiol. Anim. Nutr. 2017, 101, 1103–1114. [Google Scholar] [CrossRef] [PubMed]
- Xin, H.; Khan, N.A.; Liu, X.; Jiang, X.; Sun, F.; Zhang, S.; Sun, Y.; Zhang, Y.; Li, X. Profiles of Odd- and Branched-Chain Fatty Acids and Their Correlations With Rumen Fermentation Parameters, Microbial Protein Synthesis, and Bacterial Populations Based on Pure Carbohydrate Incubation In Vitro. Front. Nutr. 2021, 8, 733352. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, G.R.; Hargrove, G.L.; Kroger, M. Diurnal Variations in Milk Yield, Fat Yield, Milk Fat Percentage, and Milk Protein Percentage of Holstein-Friesian Cows. J. Dairy Sci. 1973, 56, 409–410. [Google Scholar] [CrossRef]
- Wang, C.; Liu, H.Y.; Wang, Y.M.; Yang, Z.Q.; Liu, J.X.; Wu, Y.M.; Yan, T.; Ye, H.W. Effects of Dietary Supplementation of Methionine and Lysine on Milk Production and Nitrogen Utilization in Dairy Cows. J. Dairy Sci. 2010, 93, 3661–3670. [Google Scholar] [CrossRef]
- Kaneko, J.J.; Harvey, J.W.; Bruss, M.L. Clinical Biochemistry of Domestic Animals, 6th ed.; Academic Press: Cambridge, MA, USA, 2008; ISBN 9780123704917. [Google Scholar] [CrossRef]
- Feijó, J.O.; Mattei, P.; Oliviera, A.M.; Jacometo, C.B.; Tabeleão, V.C.; Pereira, R.A.; Schmitt, E.; Del Pino, F.A.B.; Corrêa, M.N. Parâmetros Bioquímicos Clínicos de Vacas de Alta e Média Produção de Leite, Criadas Em Sistema Freestall. Rev. Bras. Ciência Veterinária 2016, 23, 180–185. [Google Scholar] [CrossRef]
- Mohsin, M.A.; Yu, H.; He, R.; Wang, P.; Gan, L.; Du, Y.; Huang, Y.; Abro, M.B.; Sohaib, S.; Pierzchala, M.; et al. Differentiation of Subclinical Ketosis and Liver Function Test Indices in Adipose Tissues Associated with Hyperketonemia in Postpartum Dairy Cattle. Front. Vet. Sci. 2022, 8, 796494. [Google Scholar] [CrossRef]
Variables | Diet 1 |
---|---|
Diet composition (% DM) | |
Corn silage | 32.85 |
Corn grain, ground | 18.46 |
Soybean meal, 46% CP | 10.35 |
Oat and pea silage | 5.82 |
Soybean hulls | 5.15 |
Wet brewery residue | 3.80 |
Cottonseed, whole | 3.09 |
Wheat bran | 3.05 |
Ryegrass haylage | 3.03 |
Wheat straw | 3.02 |
Soybean meal, expellers | 2.46 |
Corn germ | 2.18 |
Sodium bicarbonate | 1.45 |
Brewery yeast | 1.21 |
Limestone | 0.82 |
Mineral mix | 0.51 |
Kaolin, hydrous aluminum silicate | 0.62 |
Vida Lac All Lands | 0.33 |
Sodium chloride | 0.27 |
Sugar | 0.27 |
Urea | 0.24 |
Magnesium oxide | 0.31 |
Yeast | 0.26 |
Mycotoxin adsorbent | 0.20 |
MFP, HMTBa 1 | 0.12 |
Mineral-vitamin mix | 0.07 |
Sulfur 70% | 0.03 |
Dicalcium phosphate | 0.03 |
Variables | Diet 1 |
---|---|
Chemical composition | |
Dry matter, % | 47.38 |
Ether extract, %DM | 3.98 |
Neutral detergent fiber, %DM | 30.46 |
Acid detergent fiber, %DM | 17.30 |
Lignin, %DM | 2.40 |
Forage NDF, % | 21.29 |
Ash, %DM | 8.98 |
Starch, %DM | 24.98 |
Crude protein, %DM | 16.89 |
RDP, %DM | 10.15 |
RUP, %DM | 6.74 |
Metabolizable protein available in milk, g/d | 1523.4 |
Methionine, %MP | 2.10 |
Lysine, %MP | 6.24 |
Lys:Met, %MP | 2.97 |
Variables | Treatment | |||
---|---|---|---|---|
Control 1 | HMTBa 2 | SEM | p-Value | |
Body weight | ||||
D1 | 745 | 733 | 6.8 | 0.21 |
D42 | 753 | 751 | 6.6 | 0.89 |
ΔBW 3 | +7.6 | +17.6 | 5.8 | 0.09 |
Body condition score | ||||
D1 | 3.27 | 3.08 | 0.06 | <0.01 |
D42 | 3.23 | 3.36 | 0.08 | 0.12 |
ΔBCS 4 | −0.04 | +0.28 | 0.09 | <0.01 |
Variables | Treatment | p Value 3 | ||||
---|---|---|---|---|---|---|
Control 1 | HMTBa 2 | SEM | Treat | Time | Treat × Time | |
Milk Yield kg/d | 46.77 | 49.41 | 0.90 | 0.11 | 0.001 | <0.01 |
4% FCM kg/d | 47.42 | 49.03 | 0.81 | 0.32 | <0.001 | 0.01 |
ECM kg/d | 47.27 | 49.12 | 0.47 | <0.01 | <0.001 | <0.01 |
Fat, % | 3.75 | 3.94 | 0.04 | <0.01 | <0.001 | 0.10 |
Total Protein, % | 3.25 | 3.27 | 0.02 | 0.52 | <0.001 | 0.28 |
Lactose, % | 4.69 | 4.74 | 0.01 | 0.01 | <0.001 | 0.12 |
Casein, % | 2.59 | 2.61 | 0.01 | 0.35 | <0.001 | 0.03 |
Total Solids, % | 12.86 | 13.03 | 0.05 | 0.05 | 0.003 | 0.07 |
Fat, kg/d | 1.91 | 1.98 | 0.03 | 0.13 | <0.001 | 0.02 |
Total Protein, kg/d | 1.55 | 1.58 | 0.02 | 0.21 | <0.001 | 0.01 |
Lactose, kg/d | 2.28 | 2.28 | 0.03 | 0.28 | <0.001 | <0.01 |
Casein, kg/d | 1.22 | 1.24 | 0.01 | 0.28 | <0.001 | <0.01 |
Total Solids, kg/d | 6.21 | 6.27 | 0.07 | 0.55 | <0.001 | <0.01 |
MUN, mg/dL 4 | 17.17 | 16.96 | 0.22 | 0.54 | <0.001 | <0.01 |
Somatic Cell Score 5 | 2.5 | 2.1 | 0.20 | 0.05 | <0.001 | 0.02 |
Fatty Acid g/100 | Control 1 | HMTBa 2 | SEM | p-Value |
---|---|---|---|---|
C4:0 | 2.29 | 2.30 | 0.09 | 0.95 |
C6:0 | 1.87 | 1.91 | 0.04 | 0.31 |
C8:0 | 1.17 | 1.20 | 0.03 | 0.37 |
C10:0 | 3.29 | 3.36 | 0.06 | 0.42 |
C10:1 | 0.23 | 0.24 | 0.008 | 0.23 |
C11:0 | 0.09 | 0.11 | 0.008 | 0.01 |
C12:0 | 3.94 | 4.03 | 0.07 | 0.39 |
C12:1 | 0.03 | 0.03 | 0.002 | 0.10 |
C13:0 | 0.22 | 0.25 | 0.01 | <0.01 |
C13:0 iso | 0.03 | 0.03 | 0.001 | 0.36 |
C14:0 | 11.36 | 11.76 | 0.19 | 0.04 |
C14:0 iso | 0.07 | 0.07 | 0.002 | 0.90 |
C14:1 cis-9 | 0.93 | 0.94 | 0.03 | 0.74 |
C15:0 | 1.18 | 1.38 | 0.03 | <0.01 |
C15:0 iso | 0.19 | 0.19 | 0.004 | 0.66 |
C15:0 anteiso | 0.40 | 0.40 | 0.007 | 0.89 |
C16:0 | 33.44 | 33.74 | 0.70 | 0.67 |
C16:0 iso | 0.20 | 0.20 | 0.005 | 0.97 |
C17:0 iso | 0.36 | 0.36 | 0.007 | 0.83 |
C16:1 cis 9 | 1.40 | 1.44 | 0.05 | 0.62 |
C17:0 | 0.65 | 0.67 | 0.01 | 0.14 |
C17:1 | 0.16 | 0.17 | 0.001 | 0.27 |
C18:0 | 9.69 | 9.24 | 0.32 | 0.16 |
C18:1 trans | 2.11 | 2.26 | 0.09 | 0.10 |
C18:1 cis-9 | 18.18 | 17.48 | 0.50 | 0.17 |
C18:1 cis-11 | 0.65 | 0.63 | 0.02 | 0.64 |
C18:1 cis-12 | 0.42 | 0.44 | 0.01 | 0.22 |
C18:1 cis-13 | 0.05 | 0.05 | 0.003 | 0.87 |
C18:1 trans-16 | 0.29 | 0.29 | 0.007 | 0.38 |
C18:1 cis-15 | 0.12 | 0.12 | 0.004 | 0.55 |
C18:2 cis-9, cis-12 | 2.69 | 2.70 | 0.07 | 0.80 |
C18:2 cis-9, trans-11 | 0.39 | 0.41 | 0.01 | 0.24 |
C20:0 | 0.11 | 0.10 | 0.003 | 0.05 |
C18:3-n6 | 0.15 | 0.14 | 0.001 | 0.14 |
C18:3-n3 | 0.07 | 0.07 | 0.003 | 0.45 |
∑ De Novo (<C16) 3 | 25.15 | 25.78 | 0.42 | 0.14 |
∑ Mixed (C16) | 34.87 | 35.19 | 0.70 | 0.65 |
∑ Preformed (>C16) 3 | 35.45 | 34.85 | 0.61 | 0.32 |
∑OBCFA 4 | 3.65 | 3.88 | 0.07 | 0.02 |
SFA 4 | 71.19 | 71.60 | 0.76 | 0.59 |
MUFA 4 | 25.49 | 24.94 | 0.58 | 0.35 |
PUFA 4 | 3.49 | 3.50 | 0.09 | 0.91 |
UFA 4 | 28.69 | 28.31 | 0.75 | 0.36 |
Variables | Treatment | |||
---|---|---|---|---|
Control 1 | HMTBa 2 | SEM | p-Value | |
Glucose, mg/dL | 64.3 | 65.0 | 0.78 | 0.49 |
BUN 3, mg/dL | 46.6 | 41.3 | 1.06 | <0.01 |
AST, U/L | 105.6 | 89.4 | 5.44 | <0.01 |
Triglycerides, mg/dL | 6.4 | 6.3 | 0.20 | 0.62 |
Cholesterol, mg/dL | 224.8 | 228.2 | 6.75 | 0.51 |
Total protein, g/dL | 7.6 | 7.5 | 0.13 | 0.50 |
Albumin, g/dL | 3.3 | 3.4 | 0.04 | 0.59 |
Bilirubin, mg/dL | 0.07 | 0.08 | 0.01 | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lourenço, J.C.S.; Carrari, I.F.; Aguiar, G.C.d.; Janssen, H.P.; Lanna, D.P.D.; Teixeira, I.A.M.A.; Almeida, R.d. 2-Hydroxy-4-(Methylthio)-Mutanoate Supplementation Affects Production, Milk Fatty Acid Profile, and Blood Metabolites of High-Producing Holstein Cows. Dairy 2024, 5, 66-77. https://doi.org/10.3390/dairy5010006
Lourenço JCS, Carrari IF, Aguiar GCd, Janssen HP, Lanna DPD, Teixeira IAMA, Almeida Rd. 2-Hydroxy-4-(Methylthio)-Mutanoate Supplementation Affects Production, Milk Fatty Acid Profile, and Blood Metabolites of High-Producing Holstein Cows. Dairy. 2024; 5(1):66-77. https://doi.org/10.3390/dairy5010006
Chicago/Turabian StyleLourenço, Jean C. S., Isabela F. Carrari, Georgia C. de Aguiar, Huibert P. Janssen, Dante P. D. Lanna, Izabelle A. M. A. Teixeira, and Rodrigo de Almeida. 2024. "2-Hydroxy-4-(Methylthio)-Mutanoate Supplementation Affects Production, Milk Fatty Acid Profile, and Blood Metabolites of High-Producing Holstein Cows" Dairy 5, no. 1: 66-77. https://doi.org/10.3390/dairy5010006
APA StyleLourenço, J. C. S., Carrari, I. F., Aguiar, G. C. d., Janssen, H. P., Lanna, D. P. D., Teixeira, I. A. M. A., & Almeida, R. d. (2024). 2-Hydroxy-4-(Methylthio)-Mutanoate Supplementation Affects Production, Milk Fatty Acid Profile, and Blood Metabolites of High-Producing Holstein Cows. Dairy, 5(1), 66-77. https://doi.org/10.3390/dairy5010006