Cactus Cladodes and Sugarcane Bagasse Can Partially Replace Earless Corn Silage in Diets of Lactating Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Nutrient Intake and Digestibility Assay
2.3. Milk Yield and Chemical Composition
2.4. Feeding Behavior
2.5. Chemical Analyses
2.6. Calculations
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paula, T.; Ferreira, M.A.; Véras, A.S.C. Utilização de Pastagens Em Regiões Semiáridas: Aspectos Agronômicos E Valor Nutricional—Revisão. Arquivos Mudi 2020, 24, 140–162. [Google Scholar] [CrossRef]
- Siqueira, T.D.Q.; Monnerat, J.P.I.S.; Chagas, J.C.C.; Conceição, M.G.; de Siqueira, M.C.B.; Farias, L.R.; Oliveira, J.P.F.; Ferreira, M.A. Palatability and Nycterohemeral Patterns of Ingestive Behavior of Sheep Fed Different Roughage Sources. Trop. Anim. Health Prod. 2022, 54, 145. [Google Scholar] [CrossRef] [PubMed]
- Almeida, G.A.P.; Ferreira, M.A.; Silva, J.L.; Chagas, J.C.C.; Véras, A.S.C.; Barros, L.J.A.; Almeida, G.L.P. Sugarcane Bagasse as Exclusive Roughage for Dairy Cows in Smallholder Livestock System. Asian-Australas. J. Anim. Sci. 2018, 31, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Rocha Filho, R.R.; Santos, D.C.; Véras, A.S.C.; Siqueira, M.C.B.; Monteiro, C.C.F.; Mora-Luna, R.E.; Farias, L.R.; Santos, V.L.; Chagas, J.C.C.; Ferreira, M.A. Miúda (Nopalea cochenillifera (L.) Salm-Dyck)—The Best Forage Cactus Genotype for Feeding Lactating Dairy Cows in Semiarid Regions. Animals 2021, 11, 1774. [Google Scholar] [CrossRef] [PubMed]
- Batista, A.M.V.; Ribeironeto, A.C.; Lucena, R.B.; Santos, D.C.; Dubeux, J.C.B., Jr.; Mustafa, A.F. Chemical Composition and Ruminal Degradability of Spineless Cactus Grown in Northeastern Brazil. Rangel. Ecol. Manag. 2009, 62, 297–301. [Google Scholar] [CrossRef]
- Ferreira, M.A.; Conceição, M.G.; Monteiro, C.C.F.; Mora-Luna, R.E.; Bispo, S.V. Utilização da palma forrageira na alimentação de bovinos leiteiros. In Palma Forrageira: Potencial e Perspectivas, 2nd ed.; Santos, M.V.F., Carvalho, F.F.R., Ferreira, M.A., Eds.; Suprema Grafica: Visconde do Rio Branco, Brazil, 2022; 384p. [Google Scholar]
- Siqueira, M.C.B.; Chagas, J.C.C.; Monnerat, J.P.I.S.; Monteiro, C.C.F.; Mora-Luna, R.E.; Felix, S.B.; Rabelo, M.N.; Mesquita, F.L.T.; Ferreira, J.C.; Ferreira, M.A. Cactus Cladodes Opuntia or Nopalea and By-Product of Low Nutritional Value as Solutions to Forage Shortages in Semiarid Areas. Animals 2022, 12, 3182. [Google Scholar] [CrossRef] [PubMed]
- Freitas, W.R.; Ferreira, M.D.A.; Silva, J.L.; Véras, A.S.C.; Barros, L.J.A.; Alves, A.M.S.V.; Chagas, J.C.C.; Siqueira, T.D.Q.; Almeida, G.A.P.D. Sugarcane bagasse as only roughage for crossbred lactating cows in semiarid regions. Pesqui. Agropecu. Bras. 2018, 53, 386–393. [Google Scholar] [CrossRef]
- NRC (National Research Council). Nutrient Requirements of Dairy Cattle; National Academy Press: Washington, DC, USA, 2001.
- Torres, L.C.L.; de Andrade Ferreira, M.; Guim, A.; da Silva Vilela, M.; Guimarães, A.V.; Silva, E.C. Substituição Da Palma-Gigante Por Palma-Miúda Em Dietas Para Bovinos Em Crescimento E Avaliação de Indicadores Internos. Rev. Bras. Zootec. 2009, 38, 2264–2269. [Google Scholar] [CrossRef]
- ISO 9622/IDF 141C; Determination of Milk Fat, Protein, Lactose, and Urea Content: Guidance on the Operation of Mid-Infrared Instruments. ISO: Geneva, Switzerland, 2013.
- Sklan, D.; Ashkenazi, R.; Braun, A.; Tabori, K. Fatty Acids, Cacium Soaps of Fatty Acids and Cottonseeds Fed to High Yielding Cows. J Dairy Sci. 1992, 75, 2463–2472. [Google Scholar] [CrossRef]
- Martin, P.; Bateson, P. Measuring Behaviour, 3rd ed.; Cambridge University Press: Cambridge, UK, 2007; ISBN 9781139643757. [Google Scholar]
- Bürger, P.J.; Pereira, J.C.; de Queiroz, A.C.; da Silva, J.F.C.; de Campos Valadares Filho, S.; Cecon, P.R.; Casali, A.D.P. Comportamento Ingestivo Em Bezerros Holandeses Alimentados Com Dietas Contendo Diferentes Níveis de Concentrado. Rev. Bras. Zootec. 2000, 29, 236–242. [Google Scholar] [CrossRef]
- AOAC. Animal Feed. In Association of Official Analytical Chemists (AOAC); Helrich, K., Ed.; Association of Official Analytical Chemists, Inc.: Arlington, VA, USA, 1990; Volume I, pp. 69–90. [Google Scholar]
- Mertens, D.R. Gravimetric Determination of Amylase-Treated Neutral Detergent Fiber in Feeds with Refluxing in Beakers or Crucibles: Collaborative Study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar] [PubMed]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of Procedures for Nitrogen Fractionation of Ruminant Feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Valente, T.N.P.; Detmann, E.; Sampaio, C.B. Review: Recent Advances in Evaluation of Bags Made from Different Textiles Used in Situ Ruminal Degradation. Can. J. Anim. Sci. 2015, 95, 493–498. [Google Scholar] [CrossRef]
- Sniffen, C.J.; O’Connor, J.D.; Van Soest, P.J.; Fox, D.G.; Russell, J.B. A Net Carbohydrate and Protein System for Evaluating Cattle Diets: II. Carbohydrate and Protein Availability. J. Anim. Sci. 1992, 70, 3562–3577. [Google Scholar] [CrossRef] [PubMed]
- Detmann, E.; Valadares Filho, S.C. On the Estimation of Non-Fibrous Carbohydrates in Feeds and Diets. Arq. Bras. Med. Vet. Zootec. 2010, 62, 980–984. [Google Scholar] [CrossRef]
- Schingoethe, D.J. A 100-Year Review: Total Mixed Ration Feeding of Dairy Cows. J. Dairy Sci. 2017, 100, 10143–10150. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, T.D.Q.; Monnerat, J.P.I.S.; Chagas, J.C.; Conceição, M.G.; Siqueira, M.C.B.; Viana, T.B.L.; Ferreira, M.A. Cactus Cladodes Associated with Urea and Sugarcane Bagasse: An Alternative to Conserved Feed in Semi-Arid Regions. Trop. Anim. Health Prod. 2019, 51, 1975–1980. [Google Scholar] [CrossRef] [PubMed]
- Getahun, D.; Tewodros Alemneh, T.; Akeberegn, D.; Getabalew, M.; Zewdie, D. Urea Metabolism and Recycling in Ruminants. Biomed. J. Sci. Tech. Res. 2019, 20, 14790–14796. [Google Scholar] [CrossRef]
- Conceição, M.G.; Ferreira, M.A.; Campos, J.M.S.; Silva, J.L.; Detmann, E.; Siqueira, M.C.B.; Barros, L.J.A.; Costa, C.T.F. Replacement of Wheat Bran with Spineless Cactus in Sugarcane-Based Diets for Steers. Rev. Bras. Zootec. 2016, 45, 158–164. [Google Scholar] [CrossRef]
- Siqueira, M.C.B.; Ferreira, M.A.; Monnerat, J.P.I.S.; Silva, J.L.; Costa, C.T.F.; Conceicão, M.G.; Andrade, R.P.X.; Barros, L.J.A.; Melo, T.T.B. Optimizing the use of spineless cactus in the diets of cattle: Total and partial digestibility, fiber dynamics and ruminal parameters. Anim. Feed Sci. Technol. 2017, 226, 56–64. [Google Scholar] [CrossRef]
- Munhame, J.A.; Batista, Â.M.V.; Monnerat, J.P.I.S.; Maciel, M.V.; Lopes, L.A.; Silva, T.G.P.; Andrade, R.B.; Cardoso, D.B.; Carvalho, F.F.R. Intake, Digestibility, Ingestive Behavior and Performance of Goats Fed Spineless Cactus Genotypes Resistant to Carmine Cochineal. Arq. Bras. Med. Vet. Zootec. 2021, 73, 1209–1216. [Google Scholar] [CrossRef]
- Siqueira, M.C.B.; Ferreira, M.A.; Monnerat, J.P.I.S.; Silva, J.L.; Costa, C.T.F.; Conceição, M.G.; Soares, A.A.; Andrade, I.B.; Chagas, J.C.C. Nutritional Performance and Metabolic Characteristics of Cattle Fed Spineless Cactus. J. Agric. Sci. Technol. 2018, 20, 13–22. [Google Scholar]
- Sánchez, B.M.S.; Véras, A.S.C.; Freitas, E.V.; Farias, L.R.; Albuquerque, J.G.S.S.; Almeida, G.A.P.; Mora-Luna, R.E.; Monteiro, C.C.F.; Gama, M.A.S.; Ferreira, M.A. Partial Replacement of Sugarcane with Cactus (Opuntia Stricta) Cladodes Improves Milk Yield and Composition in Holstein Dairy Cows. Anim. Prod. Sci. 2022, 62, 691–699. [Google Scholar] [CrossRef]
- Monteiro, C.C.F.; Melo, A.A.S.; Ferreira, M.A.; Campos, J.M.S.; Souza, J.S.R.S.; Silva, E.T.S.; Andrade, R.D.P.X.; Silva, E.C. Replacement of Wheat Bran with Spineless Cactus (Opuntia Ficus Indica Mill Cv Gigante) and Urea in the Diets of Holstein X Gyr Heifers. Trop. Anim. Health Prod. 2014, 46, 1149–1154. [Google Scholar] [CrossRef]
- Erickson, P.S.; Kalscheur, K.F. Nutrition and Feeding of Dairy Cattle. In Animal Agriculture; Academic Press: Cambridge, MA, USA, 2020; pp. 157–180. [Google Scholar] [CrossRef]
- Griinari, J.M.; Dwyer, D.A.; McGuire, M.A.; Bauman, D.E.; Palmquist, D.L.; Nurmela, K.V.V. Trans-Octadecenoic Acids and Milk Fat Depression in Lactating Dairy Cows. J. Dairy Sci. 1998, 81, 1251–1261. [Google Scholar] [CrossRef]
- Davis, C.L.; Brown, R.E. Low-Fat Milk Syndrome. In Digestion and Metabolism in the Ruminant; Phillipson, A.T., Ed.; Oriel Press: Newcastle upon Tyne, UK, 1970; pp. 545–565. [Google Scholar]
- Sutton, J.D. Altering Milk Composition by Feeding. J. Dairy Sci. 1989, 72, 2801–2814. [Google Scholar] [CrossRef]
- Leskinen, H.; Ventto, L.; Kairenius, P.; Shingfield, K.J.; Vilkki, J. Temporal Changes in Milk Fatty Acid Composition during Diet-Induced Milk Fat Depression in Lactating Cows. J. Dairy Sci. 2019, 102, 5148–5160. [Google Scholar] [CrossRef]
- Ramirez Ramirez, H.A.; Harvatine, K.J.; Kononoff, P.J. Short Communication: Forage Particle Size and Fat Intake Affect Rumen Passage, the Fatty Acid Profile of Milk, and Milk Fat Production in Dairy Cows Consuming Dried Distillers Grains with Solubles. J. Dairy Sci. 2016, 99, 392–398. [Google Scholar] [CrossRef]
Item 1 | Opuntia | ECS 2 | Surgacane Bagasse | Wheat Bran | Ground Corn | Corn Gluten Meal | Corn Gluten Feed | Full-Fat Corn Germ |
---|---|---|---|---|---|---|---|---|
DM | 140 (21.0) | 293 (12.0) | 658 (57.0) | 882 (8.0) | 884 (1.4) | 922 (1.8) | 888 (13.0) | 957 (1.3) |
OM | 919 (9.6) | 939 (2.7) | 948 (13.0) | 945 (2.5) | 986 (1.3) | 925 (10.0) | 918 (4.3) | 992 (12.0) |
CP | 54.0 (3.6) | 65.2 (2.3) | 16.1 (1.0) | 165 (2.6) | 89.0 (0.76) | 661 (2.8) | 263 (3.0) | 108 (3.4) |
EE | 16.7 (3.5) | 19.5 (2.3) | 7.9 (1.7) | 34.7 (3.2) | 42.6 (2.5) | 22.6 (3.6) | 28.0 (3.1) | 474 (7.0) |
apNDF | 280 (7.9) | 616 (20.0) | 799 (11.0) | 387 (5.1) | 117 (3.5) | 65.3 (2.5) | 357 (5.7) | 247 (4.1) |
NFC | 569 (7.0) | 238 (2.5) | 124 (2.3) | 358 (4.9) | 737 (9.7) | 177 (1.9) | 270 (2.6) | 163 (2.3) |
iNDF | 56.5 (3.4) | 178 (4.8) | 486 (11.0) | 128 (1.3) | 21.2 (2.5) | 19.6 (1.5) | 44.6 (2.2) | 36.5 (2.5) |
Ingredient | Replacement Level | ||||
---|---|---|---|---|---|
0 | 25 | 50 | 75 | 100 | |
Earless corn silage | 591 | 443 | 295 | 148 | 0.0 |
Sugarcane bagasse | 0.0 | 70.9 | 142 | 213 | 284 |
Opuntia | 0.0 | 76.8 | 153 | 230 | 306 |
Wheat bran | 83.1 | 83.1 | 83.1 | 83.1 | 83.1 |
Ground corn | 77.1 | 71.1 | 65.5 | 59.9 | 54.5 |
Full-fat corn germ | 72.2 | 76.5 | 80.9 | 85.2 | 89.5 |
Gluten feed | 81.9 | 81.9 | 81.9 | 81.9 | 81.9 |
Corn gluten meal | 71.7 | 71.7 | 71.7 | 71.7 | 71.7 |
Urea/Ammonium sulfate 1 | 3.0 | 4.6 | 6.2 | 7.8 | 9.4 |
Salt | 5.1 | 5.1 | 5.1 | 5.1 | 5.1 |
Mineral blend 2 | 15.2 | 15.2 | 15.2 | 15.2 | 15.2 |
Chemical composition | |||||
Dry matter 3 | 404 (8.8) | 377 (14.0) | 354 (26.0) | 334 (34.0) | 318 (40.0) |
Organic matter | 922 (1.5) | 922 (2.2) | 921 (3.3) | 920 (4.6) | 919 (5.9) |
Crude protein | 144 (3.3) | 144 (2.8) | 143 (2.2) | 143 (1.6) | 143 (1.2) |
Ether extract | 55.9 (2.2) | 56.5 (1.6) | 57.3 (1.2) | 58.1 (1.1) | 58.9 (1.4) |
apNDF 4 | 457 (14.0) | 444 (11.0) | 432 (8.3) | 419 (6.3) | 407 (6.3) |
Nonfiber carbohydrates | 395 (9.0) | 406 (6.6) | 417 (5.0) | 428 (5.9) | 439 (8.5) |
iNDF 5 | 124 (8.2) | 138 (4.3) | 152 (1.7) | 165 (3.8) | 177 (7.0) |
Total digestible nutrients | 638 (25.0) | 653 (42.0) | 669 (41.0) | 684 (33.0) | 665 (53.0) |
Net energy of lactation (Mcal/kg DM) | 1.44 (0.06) | 1.48 (0.10) | 1.52 (0.10) | 1.56 (0.08) | 1.51 (0.13) |
Item (kg/day) 1 | Replacement Level (%) | SEM 2 | p-Value 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
0 | 25 | 50 | 75 | 100 | L | Q | C | ||
Dry matter | 15.98 | 17.32 | 17.86 | 18.55 | 18.73 | 0.618 | <0.0001 | 0.1323 | 0.8115 |
Dry matter (% BW 4) | 2.82 | 3.03 | 3.11 | 3.26 | 3.34 | 0.125 | <0.0001 | 0.4353 | 0.7700 |
Organic matter | 14.74 | 15.91 | 16.36 | 16.92 | 17.05 | 0.578 | <0.0001 | 0.1412 | 0.7806 |
Crude protein | 2.37 | 2.56 | 2.69 | 2.79 | 2.79 | 0.092 | <0.0001 | 0.0470 | 0.8528 |
Ether extract | 0.91 | 1.02 | 1.08 | 1.13 | 1.08 | 0.039 | <0.0001 | <0.0001 | 0.3495 |
apNDF | 7.00 | 7.31 | 7.15 | 7.15 | 7.02 | 0.274 | 0.8331 | 0.2535 | 0.5323 |
apNDF (% BW 4) | 1.24 | 1.28 | 1.24 | 1.26 | 1.25 | 0.053 | 0.8940 | 0.6396 | 0.5000 |
Non-fibrous carbohydrates | 4.46 | 5.03 | 5.44 | 5.84 | 6.16 | 0.201 | <0.0001 | 0.3048 | 0.8785 |
NEL (Mcal/day 5) | 21.32 | 24.28 | 25.93 | 28.01 | 27.31 | 1.104 | <0.0001 | 0.0245 | 0.7877 |
iNDF 6 | 2.00 | 2.26 | 2.43 | 2.63 | 2.82 | 0.112 | <0.0001 | 0.7224 | 0.7366 |
Item | Replacement Level (%) | SEM 1 | p-Value 2 | ||||||
---|---|---|---|---|---|---|---|---|---|
0 | 25 | 50 | 75 | 100 | L | Q | C | ||
Dry matter | 598.79 | 622.36 | 636.21 | 655.62 | 636.12 | 15.054 | 0.0120 | 0.1012 | 0.4735 |
Organic matter | 618.57 | 640.99 | 658.78 | 675.48 | 660.33 | 14.378 | 0.0061 | 0.1163 | 0.4991 |
Crude Protein | 604.39 | 662.69 | 706.17 | 751.05 | 745.03 | 15.407 | <0.0001 | 0.0810 | 0.3469 |
Ether extract | 857.14 | 874.32 | 880.81 | 894.89 | 884.03 | 8.801 | 0.0940 | 0.1354 | 0.5970 |
apNDF 3 | 425.99 | 430.44 | 413.31 | 420.49 | 357.34 | 24.789 | 0.0252 | 0.1434 | 0.4401 |
Nonfibrous carbohydrates | 881.81 | 888.72 | 914.90 | 918.82 | 927.13 | 11.549 | 0.0003 | 0.5823 | 0.6183 |
Item | Replacement Level (%) | SEM 1 | p-Value 2 | ||||||
---|---|---|---|---|---|---|---|---|---|
0 | 25 | 50 | 75 | 100 | L | Q | C | ||
Feeding time (min/day) | 358 | 346 | 345 | 339 | 322 | 15.937 | 0.0028 | 0.5989 | 0.3708 |
Rumination time (min/day) | 561 | 523 | 453 | 448 | 418 | 23.257 | <0.0001 | 0.2446 | 0.8974 |
Idle time (min/day) | 521 | 571 | 642 | 653 | 700 | 29.631 | <0.0001 | 0.4398 | 0.8376 |
Total chewing time (min/day) | 906 | 869 | 798 | 787 | 740 | 29.631 | <0.0001 | 0.4398 | 0.8376 |
Efficiencies, (g/min) | |||||||||
Feeding efficiency (DM) 3 | 44 | 51 | 53 | 57 | 61 | 3.194 | <0.0001 | 0.9332 | 0.7020 |
Rumination efficiency (DM) 3 | 28 | 33 | 40 | 42 | 47 | 2.283 | <0.0001 | 0.3697 | 0.7053 |
Rumination efficiency (apNDF) 3 | 12 | 14 | 16 | 16 | 18 | 0.889 | <0.0001 | 0.2935 | 0.5162 |
Item | Replacement Level (%) | SEM 1 | p-Value 2 | ||||||
---|---|---|---|---|---|---|---|---|---|
0 | 25 | 50 | 75 | 100 | L | Q | C | ||
Milk yield, kg/day | 21.31 | 23.24 | 23.55 | 24.32 | 22.85 | 1.420 | 0.0543 | 0.0146 | 0.7684 |
FCMY 3 | 20.44 | 22.17 | 21.20 | 21.11 | 18.48 | 1.320 | 0.0560 | 0.0132 | 0.9475 |
Milk composition, % | |||||||||
Fat | 3.26 | 3.09 | 2.95 | 2.77 | 2.35 | 0.263 | <0.0001 | 0.1320 | 0.6797 |
Protein | 2.87 | 2.91 | 2.96 | 2.94 | 3.02 | 0.049 | <0.0001 | 0.8171 | 0.1976 |
Lactose | 4.32 | 4.38 | 4.44 | 4.41 | 4.54 | 0.068 | <0.0001 | 0.6592 | 0.1025 |
Total solids | 11.12 | 11.28 | 10.91 | 10.83 | 10.61 | 0.314 | 0.0028 | 0.3726 | 0.3844 |
Nonfat solids | 7.87 | 7.97 | 8.10 | 8.07 | 8.26 | 0.119 | <0.0001 | 0.9142 | 0.2786 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medeiros, I.P.S.; Guido, S.I.; Gama, M.A.S.; Silva, C.H.M.; Siqueira, M.C.B.; Silva, C.S.d.; Netto, A.J.; Felix, S.B.; Rabelo, M.N.; Santos, T.V.M.; et al. Cactus Cladodes and Sugarcane Bagasse Can Partially Replace Earless Corn Silage in Diets of Lactating Dairy Cows. Dairy 2024, 5, 33-43. https://doi.org/10.3390/dairy5010003
Medeiros IPS, Guido SI, Gama MAS, Silva CHM, Siqueira MCB, Silva CSd, Netto AJ, Felix SB, Rabelo MN, Santos TVM, et al. Cactus Cladodes and Sugarcane Bagasse Can Partially Replace Earless Corn Silage in Diets of Lactating Dairy Cows. Dairy. 2024; 5(1):33-43. https://doi.org/10.3390/dairy5010003
Chicago/Turabian StyleMedeiros, Izaac P. S., Sebastião I. Guido, Marco A. S. Gama, Carlos H. M. Silva, Michelle C. B. Siqueira, Camila S. da Silva, Antonio J. Netto, Silas B. Felix, Milena N. Rabelo, Thayane V. M. Santos, and et al. 2024. "Cactus Cladodes and Sugarcane Bagasse Can Partially Replace Earless Corn Silage in Diets of Lactating Dairy Cows" Dairy 5, no. 1: 33-43. https://doi.org/10.3390/dairy5010003
APA StyleMedeiros, I. P. S., Guido, S. I., Gama, M. A. S., Silva, C. H. M., Siqueira, M. C. B., Silva, C. S. d., Netto, A. J., Felix, S. B., Rabelo, M. N., Santos, T. V. M., Leite, M. A. M., & Ferreira, M. A. (2024). Cactus Cladodes and Sugarcane Bagasse Can Partially Replace Earless Corn Silage in Diets of Lactating Dairy Cows. Dairy, 5(1), 33-43. https://doi.org/10.3390/dairy5010003