Modernization of Railway Wagons for Customer Satisfaction and Safety
Abstract
:1. Introduction
2. Research Design
2.1. Disorders
2.2. Structural Units
3. Results
3.1. There Is No Significant Statistical Dependence between the Different Disorders
3.2. There Is a Significant Statistical Dependence between Structural Units and Failures
- C1–I2;
- C2–(I4 + I6);
- C3–(I7 + I8 + I9);
- C4–I4;
- C5–I9.
- C2–I4—dependence of the heating and air conditioning design unit on the fault labelled air conditioning—p value = 0.0409;
- C2–I6—dependence of the heating and air conditioning design.
- C3–I7—dependence of the structural unit electrical equipment and wiring on the fault marked train radio—p value = 0.0750;
- C3–I8—dependence of the electrical equipment and wiring on the fault marked lighting—p value = 0.0231;
- C3–I9—dependence of the design unit electrical equipment and wiring on the fault labelled power distribution problems—p value = 0.0197.
3.3. There Is a Proven Correlation between Retrofitting and the Reduction in Breakdowns on Passenger Wagons
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dailydka, S. Choosing railway vehicles for carrying passengers. Transport 2010, 25, 11–16. [Google Scholar] [CrossRef]
- Meriç, G. Demiryolu ile Seyahat Eden Yolcuların Haklarına Dair Yönetmelik’in Uygulama Alanı ve Yönetmelik Uyarınca Demiryolu Tren İşletmecisinin Sorumluluğu. İstanb. Hukuk Mecm. 2021, 79, 837–879. [Google Scholar] [CrossRef]
- Ilkjær, L.B.; Lind, T. Passengers’ injuries reflected wagon interior at the railway accident in Mundelstrup, Denmark. Accid. Anal. Prev. 2001, 33, 285–288. [Google Scholar] [CrossRef] [PubMed]
- Panahi, E.; Younesian, D. Acoustic performance enhancement in a railway passenger wagon using hybrid ray-tracing and image-source method. Appl. Acoust. 2020, 170, 107527. [Google Scholar] [CrossRef]
- Abood, K.H.A.; Khan, R.A. Railway wagon simulation model to study the influence of vertical secondary suspension stiffness on ride comfort of railway carbody. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2011, 225, 1349–1359. [Google Scholar] [CrossRef]
- Milković, V.; Lisjak, D.; Kolar, D. New reliability-based model of stock optimisation for railroad passenger wagon maintenance. FME Trans. 2020, 48, 914–921. [Google Scholar] [CrossRef]
- Yu, Y.; Zhao, L.; Zhou, C. Modeling and simulation of railway vehicle vertical dynamic behavior by considering the effect of passenger-carbody coupling vibration. Int. J. Model. Simul. Sci. Comput. 2019, 10, 1950031. [Google Scholar] [CrossRef]
- Gallo, F.; Di Febbraro, A.; Giglio, D.; Sacco, N. Planning and optimization of passenger railway services with virtually coupled trains. In Proceedings of the 2021 7th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Crete, Greece, 16–17 June 2021; pp. 1–6. [Google Scholar]
- Aguayo, P.; Seriani, S.; Delpiano, J.; Farias, G.; Fujiyama, T.; Velastin, S.A. Experimental Method to Estimate the Density of Passengers on Urban Railway Platforms. Sustainability 2023, 15, 1000. [Google Scholar] [CrossRef]
- Craig, M.; Asim, T. Numerical Investigations on the Propagation of Fire in a Railway Carriage. Energies 2020, 13, 4999. [Google Scholar] [CrossRef]
- Liu, T.; Geng, S.; Chen, X.; Krajnovic, S. Numerical analysis on the dynamic airtightness of a railway vehicle passing through tunnels. Tunn. Undergr. Space Technol. 2020, 97, 103286. [Google Scholar] [CrossRef]
- Ulewicz, R.; Nový, F.; Novák, P.; Palček, P. The investigation of the fatigue failure of passenger wagon draw-hook. Eng. Fail. Anal. 2019, 104, 609–616. [Google Scholar] [CrossRef]
- Li, S.; Zhu, X.; Shang, P.; Li, T.; Liu, W. Optimizing a shared freight and passenger high-speed railway system: A multi-commodity flow formulation with Benders decomposition solution approach. Transp. Res. Part B Methodol. 2023, 172, 1–31. [Google Scholar] [CrossRef]
- Leštinský, L.; Zvolenský, P. New methods of noise reduction in railway carriages. Transp. Res. Procedia 2019, 40, 778–783. [Google Scholar] [CrossRef]
- Wei, Z.; Sun, X.; Yang, F.; Ke, Z.; Lu, T.; Zhang, P.; Shen, C. Wagon interior noise-based inspection for rail corrugation on high-speed railway track. Appl. Acoust. 2022, 196, 108881. [Google Scholar] [CrossRef]
- Liu-Henke, X.; Lückel, J.; Jäker, K.-P. An active suspension/tilt system for a mechatronic railway carriage. Control Eng. Pract. 2002, 10, 991–998. [Google Scholar] [CrossRef]
- Krénusz, M.; Kovács, R.; Krémer, M. Estimating the Damage of Railway Wagon Wheels Equipped with Disc Brakes. Period. Polytech. Mech. Eng. 2021, 65, 286–292. [Google Scholar] [CrossRef]
- He, X.; Li, H.; Hu, L.; Wang, H.; Kareem, A. Crosswind aerodynamic characteristics of a stationary interior railway wagon through a long-span truss-girder bridge. Eng. Struct. 2020, 210, 110350. [Google Scholar] [CrossRef]
- Gasparik, J.; Dedik, M.; Cechovic, L.; Blaho, P. Estimation of Transport Potential in Regional Rail Passenger Transport by Using the Innovative Mathematical-Statistical Gravity Approach. Sustainability 2020, 12, 3821. [Google Scholar] [CrossRef]
- Dedík, M.; Gašparík, J.; Záhumenská, Z.; Ľupták, V.; Hřebíček, Z. Proposal of the Measures to Increase the Competitiveness of Rail Freight Transport in the EU. Naše More 2018, 65, 202–207. [Google Scholar] [CrossRef]
- Konečný, V.; Zuzaniak, M.; Brídziková, M.; Jaśkiewicz, M. Regional Differences in the Impact of the COVID-19 Pandemic on the Demand for Bus Transport in the Slovak Republic. LOGI Sci. J. Transp. Logist. 2023, 14, 146–157. [Google Scholar] [CrossRef]
- Pálková, A.; Mašek, J.; Pribula, D. Co-modality as a tool for improvement of public transport. In Transport Means 2022: Sustainability: Research and Solutions, Proceedings of the 26th International Scientific Conference, Online, 5–7 October 2022; Kauno Technologijos Universitetas: Kaunas, Lithuania, 2022; Volume 1, pp. 646–650. ISSN 1822-296X. [Google Scholar]
- Černá, L.; Pribula, D.; Bulková, Z.; Abramović, B. Draft of Public Rail Passenger Transport During the COVID-19 Pandemic. LOGI Sci. J. Transp. Logist. 2023, 14, 77–88. [Google Scholar] [CrossRef]
- Dömény, I.; Dolinayová, A. Possibilities for Introducing a New Night Train Connection in Middle Europe. Transp. Tech. Technol. 2021, 17, 6–12. [Google Scholar] [CrossRef]
- Buganová, K. Systémy včasného varovania. In Ochrana životních podmínek obyvatelstva, (Early warning systems. In Protection of living conditions of the population). In Proceedings of the 7th International Scientific Conference, Zlín, Czech Republic, 14–17 July 2012; VŠKE: Brno, Czech Republic, 2012; pp. 50–56. [Google Scholar]
- Harantová, V.; Mazanec, J.; Štefancová, V.; Mašek, J.; Foltýnová, H.B. Two-Step Cluster Analysis of Passenger Mobility Segmentation during the COVID-19 Pandemic. Mathematics 2023, 11, 583. [Google Scholar] [CrossRef]
- Dolinayova, A.; Domeny, I. Competition on the Railway Market in a Segment of Public Service Obligations in Terms of Effectiveness: Study in V4 Countries. J. Compet. 2022, 14, 41–58. [Google Scholar] [CrossRef]
- Regulation (EC) No 1370/2007 of the European Parliament and of the Council of 23 October 2007 on Public Passenger Transport Services by Rail and by Road and Repealing Council Regulations (EEC) Nos 1191/69 and 1107/70. Off. J. Eur. Union 2007, L 315, 1–13.
- Varcholová, T.; Dubovická, L. Nový Manažment Rizika; Wolters Kluwer: Bratislava, Slovakia, 2008; 196p. [Google Scholar]
- Hitka, M.; Naď, M.; Langová, N.; Gejdoš, M.; Lizoňová, D.; Sydor, M. Designing chairs for users with high body weight. BioResources 2023, 18, 5309–5324. [Google Scholar] [CrossRef]
- Smerek, L.; Vetráková, M. Difference in Human Resources Development in Various Types of Companies. Pol. J. Manag. Stud. 2020, 21, 398–411. [Google Scholar] [CrossRef]
- Stacho, Z.; Lizbetinova, L.; Stachova, K.; Starecek, A. The Application of Progressive HR Tools in the Environment of Slovak Enterprises. J. Compet. 2022, 14, 173–190. [Google Scholar] [CrossRef]
I1 | I2 | I3 | I4 | I5 | I6 | I7 | I8 | I9 | |
---|---|---|---|---|---|---|---|---|---|
I1 | 1 | ||||||||
I2 | 0.8569 | 1 | |||||||
I3 | 0.1299 | 0.8934 | 1 | ||||||
I4 | 0.0233 | 0.1093 | 0.0594 | 1 | |||||
I5 | 0.0834 | 0.1009 | 0.0837 | 0.2153 | 1 | ||||
I6 | 0.1573 | 0.2115 | 0.1080 | 0.7049 | 0.0655 | 1 | |||
I7 | 0.0278 | 0.0819 | 0.4621 | 0.0255 | 0.0112 | 0.2115 | 1 | ||
I8 | 0.3951 | 0.0482 | 0.3015 | 0.2145 | 0.2066 | 0.0985 | 0.1554 | 1 | |
I9 | 0.4587 | 0.2831 | 0.3591 | 0.1673 | 0.1862 | 0.2931 | 0.1576 | 0.9251 | 1 |
I1 | I2 | I3 | I4 | I5 | I6 | I7 | I8 | I9 | |
---|---|---|---|---|---|---|---|---|---|
C1 | 0.7931 | 0.8804 | 0.0270 | 0.0057 | 0.3058 | 0.0991 | 0.0054 | 0.0040 | 0.0004 |
C2 | 0.2597 | 0.0434 | 0.1824 | 0.9053 | 0.1571 | 0.9182 | 0.1246 | 0.0806 | 0.7261 |
C3 | 0.2326 | 0.2775 | 0.2427 | 0.0330 | 0.7865 | 0.7770 | 0.8649 | 0.9243 | 0.9535 |
C4 | 0.1246 | 0.2191 | 0.0271 | 0.9053 | 0.1246 | 0.2144 | 0.0434 | 0.2053 | 0.0312 |
C5 | 0.0262 | 0.2155 | 0.2438 | 0.1747 | 0.1571 | 0.2675 | 0.2597 | 0.0259 | 0.9254 |
Type of Wagon | Time Series before Modernization | Time Series after Modernization | Numbers of Wagons |
---|---|---|---|
Bmz | March 2018–September 2021 | October 2021–March 2023 | 26 |
Bdteer | January 2020–April 2022 | May 2022–March 2023 | 18 |
Structural Unit | Proportion of Disorders/1 Month | |
---|---|---|
Before Modernization | After Modernization | |
WC Washroom | 7.2143 | 5.2667 |
Wagon Cabinet | 2.3571 | 2.2333 |
Electric Equipment | 2.1786 | 0.9333 |
Interior Equipment | 1.4643 | 1.0667 |
Heating/AC | 1.1071 | 0.7667 |
Others | 0.9286 | 0.3333 |
Chassis | 0.3571 | 0.2333 |
Air Brake | 0.1786 | 0.0667 |
Other Equipment | 0.1429 | 0.0333 |
Low-Voltage locomotive current | 0.0357 | 0.0333 |
Structural Unit | Proportion of Disorders/1 Month | |
---|---|---|
Before Modernization | After Modernization | |
WC Washroom | 8.5357 | 4.8667 |
Wagon Cabinet | 3.1429 | 1.7667 |
Electric Equipment | 2.4643 | 1.4333 |
Interior Equipment | 2.3571 | 0.7333 |
Heating/AC | 1.1786 | 0.5667 |
Others | 0.8929 | 0.4333 |
Chassis | 0.6429 | 0.2667 |
Air Brake | 0.3214 | 0.1333 |
Other Equipment | 0.2143 | 0.0667 |
Low-Voltage locomotive current | 0.1071 | 0.033 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nedeliaková, E.; Valla, M.; Masár, M. Modernization of Railway Wagons for Customer Satisfaction and Safety. Vehicles 2024, 6, 374-383. https://doi.org/10.3390/vehicles6010015
Nedeliaková E, Valla M, Masár M. Modernization of Railway Wagons for Customer Satisfaction and Safety. Vehicles. 2024; 6(1):374-383. https://doi.org/10.3390/vehicles6010015
Chicago/Turabian StyleNedeliaková, Eva, Michal Valla, and Matej Masár. 2024. "Modernization of Railway Wagons for Customer Satisfaction and Safety" Vehicles 6, no. 1: 374-383. https://doi.org/10.3390/vehicles6010015
APA StyleNedeliaková, E., Valla, M., & Masár, M. (2024). Modernization of Railway Wagons for Customer Satisfaction and Safety. Vehicles, 6(1), 374-383. https://doi.org/10.3390/vehicles6010015