Model-Free Filter-Based Trajectory Tracking Controller for Two-Wheeled Vehicles Through Pole-Zero Cancellation Technique
Abstract
:1. Introduction
- The proposed model-free filter enhances the feedback loop accuracy by eliminating the reliance on the TWV model and it makes the position and yaw angle filtering error dynamics diagonal ensuring the first-order system by the nonlinear structure of the filter gain.
- The feedback signals obtained from the proposed model-free filter define the pole-zero cancellation (PZC) controller equipped with the nonlinearly structured PI gains to robustly stabilize the tracking errors satisfying the desired first-order convergence rate while attenuating the disturbances originating from the model–plant mismatches.
2. Nonlinear Dynamics of TMV
3. Proposed Technique
3.1. Control Objective
3.2. Model-Free Filter
3.2.1. Position Loop
3.2.2. Yaw Angle Loop
- (Model-Free)
- (Diagonalization for Filtering Error Dynamics)The proposed model-free filter results in the diagonalized system for , , and given byby constraining the design parameter in a feasible region.
3.3. Control Law
3.3.1. Derivation of Open-Loop System
3.3.2. Yaw Angle Error Stabilization Loop
3.3.3. Position Error Stabilization Loop
4. Feedback System Analysis Results
4.1. Model-Free Filter Analysis Results
4.1.1. Model-Free Filter for Position Loop
4.1.2. Model-Free Filter for Yaw Angle Loop
4.2. Control Loop Analysis Results
4.2.1. Control Loop for Yaw Angle Error Stabilization
4.2.2. Control Loop for Position Error Stabilization
5. Simulations
5.1. Trajectory Tracking Performance Evaluation Under Various Convergence Rates
5.2. Trajectory Tracking Performance Evaluation Under Various Modeling Errors
5.3. Summary of the Tracking Performance Comparison Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lindqvist, A.L.; Zhou, S.; Halkon, B.; Aguilera, R.P.; Walker, P.D. Application of Continuous Stability Control to a Lightweight Solar-Electric Vehicle Using SMC and MPC. Vehicles 2024, 6, 874–894. [Google Scholar] [CrossRef]
- Uchino, D.; Kobayashi, I.; Kuroda, J.; Ogawa, K.; Ikeda, K.; Kato, T.; Endo, A.; Kato, H.; Narita, T. A Basic Study for Active Steering Wheel System for Steering Burden Evaluation by Driving Position Focus on Driver’s Arm Size. Vehicles 2023, 5, 846–858. [Google Scholar] [CrossRef]
- Weinkath, M.; Nett, S.; Kim, C.D. Feasibility Study of Wheel Torque Prediction with a Recurrent Neural Network Using Vehicle Data. Vehicles 2023, 5, 605–614. [Google Scholar] [CrossRef]
- Moreno-Gonzalez, M.; Artuñedo, A.; Villagra, J.; Join, C.; Fliess, M. Speed-Adaptive Model-Free Path-Tracking Control for Autonomous Vehicles: Analysis and Design. Vehicles 2023, 5, 698–717. [Google Scholar] [CrossRef]
- Gao, G.; Jardin, P.; Rinderknecht, S. Linear Quadratic Tracking Control of Car-in-the-Loop Test Bench Using Model Learned via Bayesian Optimization. Vehicles 2024, 6, 1300–1317. [Google Scholar] [CrossRef]
- Ge, S.; Wang, Z.; Lee, T. Adaptive stabilization of uncertain nonholonomic systems by state and output feedback. Automatica 2003, 39, 1451–1460. [Google Scholar] [CrossRef]
- Marchand, N.; Alamir, M. Discontinuous exponential stabilization of chained form systems. Automatica 2003, 39, 343–348. [Google Scholar] [CrossRef]
- Murray, R.; Sastry, S. Nonholonomic motion planning: Steering using sinusoids. IEEE Trans. Autom. Control 1993, 38, 700–716. [Google Scholar] [CrossRef]
- Escobar, G.; Ortega, R.; Reyhanoglu, M. Regulation and tracking of the nonholonomic double integrator: A field-oriented control approach. Automatica 1998, 34, 125–131. [Google Scholar] [CrossRef]
- Kim, M.S.; Shin, J.H.; Hong, S.G.; Lee, J.J. Designing a robust adaptive dynamic controller for nonholonomic mobile robots under modeling uncertainty and disturbances. Mechatronics 2003, 13, 507–519. [Google Scholar] [CrossRef]
- Wang, B.; Liao, Z.; Guo, S. Adaptive Curve Passing Control in Autonomous Vehicles with Integrated Dynamics and Camera-Based Radius Estimation. Vehicles 2024, 6, 1648–1660. [Google Scholar] [CrossRef]
- Kaliaperumal, M.; Chidambaram, R.K. Thermal Management of Lithium-Ion Battery Pack Using Equivalent Circuit Model. Vehicles 2024, 6, 1200–1215. [Google Scholar] [CrossRef]
- Saiteja, P.; Ashok, B.; Upadhyay, D. Evaluation of Electric Vehicle Performance Characteristics for Adaptive Supervisory Self-Learning-Based SR Motor Energy Management Controller under Real-Time Driving Conditions. Vehicles 2024, 6, 509–538. [Google Scholar] [CrossRef]
- Jiang, Z.P. Robust exponential regulation of nonholonomic systems with uncertainties. Automatica 2000, 36, 189–209. [Google Scholar] [CrossRef]
- Tayerbi, A.; Rachid, A. Adaptive controller for nonholonomic mobile robots with matched uncertainties. Adv. Rob. 2000, 14, 105–118. [Google Scholar] [CrossRef]
- Hespanha, J.; Liberzon, D.; Morse, A. Logic based switching control of a nonholonomic systems with parametric modeling uncertainty. Syst. Control Lett. 1999, 38, 167–177. [Google Scholar] [CrossRef]
- Koh, K.C.; Cho, H.S. A Smooth Path Tracking Algorithm for Wheeled Mobile Robots with Dynamic Constraints. J. Intell. Rob. Syst. 1999, 24, 367–385. [Google Scholar] [CrossRef]
- Peng, S.; Shi, W. Adaptive fuzzy integral terminal sliding mode control of a nonholonomic wheeled mobile robot. Math. Prob. Eng. 2017, 2017, 3671846. [Google Scholar] [CrossRef]
- Ashrafiuon, H.; Nersesov, S.; Clayton, G. Trajectory tracking control of planar underactuated vehicles. IEEE Trans. Autom. Control 2017, 62, 1959–1965. [Google Scholar] [CrossRef]
- Rossomando, F.G.; Soria, C.; Carelli, R. Neural network based compensation control of mobile robots with partially known structure. IET Control Theory Appl. 2012, 6, 1851–1860. [Google Scholar] [CrossRef]
- Luo, S.; Wu, S.; Liu, Z.; Guan, H. Wheeled mobile robot RBFNN dynamic surface control based on disturbance observer. ISRN Appl. Math. 2014, 2014, 634936. [Google Scholar] [CrossRef]
- Rossomando, F.G.; Soria, C.; Carelli, R. Autonomous mobile robots navigation using RBF neural compensator. Control Eng. Pract. 2011, 19, 215–222. [Google Scholar] [CrossRef]
- Rossomando, F.G.; Soria, C.; Carelli, R. Sliding mode neuro adaptive control in trajectory tracking for mobile robots. J. Intell. Rob. Syst. 2014, 74, 931–944. [Google Scholar] [CrossRef]
- Sun, W.; Tang, S.; Gao, H.; Zhao, J. Two time-scale tracking control of nonholonomic wheeled mobile robots. IEEE Trans. Control Syst. Technol. 2016, 24, 2059–2069. [Google Scholar] [CrossRef]
- Kim, S.K.; Ahn, C.K. Self-Tuning Position-Tracking Controller for Two-Wheeled Mobile Balancing Robots. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 1008–1012. [Google Scholar] [CrossRef]
- Kim, S.K.; Ahn, C.K.; Agarwal, R.K. Position-Tracking Controller for Two-Wheeled Balancing Robot Applications Using Invariant Dynamic Surface. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 705–711. [Google Scholar] [CrossRef]
- Kim, S.K.; Ahn, C.K. Variable-Performance Servo System Design Without Actuator Current and Angle Measurement for Rover Vehicles. IEEE Trans. Veh. Technol. 2020, 69, 12725–12733. [Google Scholar] [CrossRef]
- Kim, S.K.; Park, J.K.; Ahn, C.K. Learning and Adaptation-Based Position-Tracking Controller for Rover Vehicle Applications Considering Actuator Dynamics. IEEE Trans. Ind. Electron. 2022, 69, 2976–2985. [Google Scholar] [CrossRef]
- Gao, B.; Hu, G.; Zhang, L.; Zhong, Y.; Zhu, X. Cubature Kalman filter with closed-loop covariance feedback control for integrated INS/GNSS navigation. Chin. J. Aeronaut. 2023, 36, 363–376. [Google Scholar] [CrossRef]
- Gao, B.; Hu, G.; Zhong, Y.; Zhu, X. Cubature Kalman Filter With Both Adaptability and Robustness for Tightly-Coupled GNSS/INS Integration. IEEE Sens. J. 2021, 21, 14997–15011. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Oh, S.; Kim, K.-S.; Kim, Y.; Kim, S.-K. Model-Free Filter-Based Trajectory Tracking Controller for Two-Wheeled Vehicles Through Pole-Zero Cancellation Technique. Vehicles 2024, 6, 1902-1921. https://doi.org/10.3390/vehicles6040093
Lee H, Oh S, Kim K-S, Kim Y, Kim S-K. Model-Free Filter-Based Trajectory Tracking Controller for Two-Wheeled Vehicles Through Pole-Zero Cancellation Technique. Vehicles. 2024; 6(4):1902-1921. https://doi.org/10.3390/vehicles6040093
Chicago/Turabian StyleLee, Hosik, Sangyoon Oh, Kyung-Soo Kim, Yonghun Kim, and Seok-Kyoon Kim. 2024. "Model-Free Filter-Based Trajectory Tracking Controller for Two-Wheeled Vehicles Through Pole-Zero Cancellation Technique" Vehicles 6, no. 4: 1902-1921. https://doi.org/10.3390/vehicles6040093
APA StyleLee, H., Oh, S., Kim, K. -S., Kim, Y., & Kim, S. -K. (2024). Model-Free Filter-Based Trajectory Tracking Controller for Two-Wheeled Vehicles Through Pole-Zero Cancellation Technique. Vehicles, 6(4), 1902-1921. https://doi.org/10.3390/vehicles6040093