Shannon Entropy in Confined He-Like Ions within a Density Functional Formalism
Abstract
:1. Introduction
2. Methodology
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jaskólski, W. Confined many-electron systems. Phys. Rep. 1996, 271, 1–66. [Google Scholar] [CrossRef]
- Dolmatov, V.K.; Baltenkov, A.S.; Connerade, J.-P. Structure and photoionization of confined atoms. Radiat. Phys. Chem. 2004, 2004, 417–433. [Google Scholar] [CrossRef]
- Sabin, J.; Brändas, E.; Cruz, S. (Eds.) Advances in Quantum Chemistry; Academic Press: New York, NY, USA, 2009; Volume 57, 58. [Google Scholar]
- Sen, K.D. (Ed.) Electronic Structure of Quantum Confined Atoms and Molecules; Springer International Publishing: Cham, Switzerland, 2014. [Google Scholar]
- Ley-Koo, E. Recent progress in confined atoms and molecules: Superintegrability and symmetry breakings. Rev. Mex. Fís. 2018, 64, 326–363. [Google Scholar] [CrossRef] [Green Version]
- Michels, A.; de Boer, J.; Bijl, A. Remarks concerning molecural interaction and their influence on the polarisability. Physica 1937, 1937, 981–994. [Google Scholar] [CrossRef]
- Ludeña, E.V. SCF calculations for hydrogen in a spherical box. J. Chem. Phys. 1977, 1977, 468–470. [Google Scholar] [CrossRef]
- Marín, J.L.; Cruz, S.A. Enclosed quantum systems: use of the direct variational method. J. Phys. B 1991, 1991, 2899–2907. [Google Scholar] [CrossRef]
- Goldman, S.; Joslin, C. Spectroscopic properties of an isotropically compressed hydrogen atom. J. Phys. Chem. 1992, 1992, 6021–6027. [Google Scholar] [CrossRef]
- Aquino, N. Accurate energy eigenvalues for enclosed hydrogen atom within spherical impenetrable boxes. Int. J. Quant. Chem. 1995, 1995, 107–115. [Google Scholar] [CrossRef]
- Sen, K.D.; Garza, J.; Vargas, R.; Aquino, N. Static dipole polarizability of shell-confined hydrogen atom. Phys. Lett. A 2002, 2002, 299–304. [Google Scholar] [CrossRef]
- Laughlin, C.; Burrows, B.L.; Cohen, M. A hydrogen-like atom confined within an impenetrable spherical box. J. Phys. B 2002, 2002, 701–715. [Google Scholar] [CrossRef]
- Laughlin, C. On the dipole polarizability of a hydrogen-like atom confined in an impenetrable spherical box. J. Phys. B 2004, 2004, 4085–4099. [Google Scholar] [CrossRef]
- Burrows, B.L.; Cohen, M. Exact solutions for perturbed confined hydrogen atoms: Polarizabilities and nuclear shielding factors. Phys. Rev. A 2005, 2005, 032508. [Google Scholar] [CrossRef]
- Sen, K.D.; Roy, A.K. Studies on the 3D confined potentials using generalized pseudospectral approach. Phys. Lett. A 2006, 2006, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Burrows, B.L.; Cohen, M. Exact solutions for spherically confined hydrogen-like atoms. Int. J. Quant. Chem. 2006, 2006, 478–484. [Google Scholar] [CrossRef]
- Aquino, N.; Campoy, G.; Montgomery, H.E., Jr. Highly accurate solutions for the confined hydrogen atom. Int. J. Quant. Chem. 2007, 2007, 1548–1558. [Google Scholar] [CrossRef]
- Baye, D.; Sen, K.D. Confined hydrogen atom by the Lagrange-mesh method: Energies, mean radii, and dynamic polarizabilities. Phys. Rev. E 2008, 2008, 026701. [Google Scholar] [CrossRef]
- Ciftci, H.; Hall, R.L.; Saad, N. Study of a confined hydrogen-like atom by the asymptotic iteration method. Int. J. Quant. Chem. 2009, 2009, 931–937. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, H.E., Jr.; Sen, K.D. Electron density and its derivatives at the nucleus for spherically confined hydrogen atom. Int. J. Quant. Chem. 2009, 2009, 688–692. [Google Scholar] [CrossRef]
- Roy, A.K. Spherical confinement of coulombic systems inside an impenetrable box: H atom and the hulthén potential. Int. J. Quant. Chem. 2015, 2015, 937–947. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.K. Critical parameters and spherical confinement of H atom in screened Coulomb potential. Int. J. Quant. Chem. 2016, 2016, 953–960. [Google Scholar] [CrossRef] [Green Version]
- Ten Seldam, C.A.; De Groot, S.R. On the ground state of a model for compressed helium. Physica 1952, 1952, 891–904. [Google Scholar] [CrossRef]
- Ludeña, E.V. SCF Hartree–Fock calculations of ground state wavefunctions of compressed atoms. J. Chem. Phys. 1978, 1978, 1770–1775. [Google Scholar] [CrossRef]
- Garza, J.; Hernández-Pérez, J.M.; Ramírez, J.-Z.; Vargas, R. Basis set effects on the Hartree–Fock description of confined many-electron atoms. J. Phys. B 2012, 2012, 015002. [Google Scholar] [CrossRef]
- Ludeña, E.V.; Gregori, M. Configuration interaction calculations for two-electron atoms in a spherical box. J. Chem. Phys. 1979, 1979, 2235–2240. [Google Scholar] [CrossRef]
- Rivelino, R.; Vianna, J.D.M. A configuration interaction model to investigate many-electron systems in cavities. J. Phys. B 2001, 34, L645–L650. [Google Scholar] [CrossRef]
- Joslin, C.; Goldman, S. Quantum Monte Carlo studies of two-electron atoms constrained in spherical boxes. J. Phys. B 1992, 1992, 1965–1975. [Google Scholar] [CrossRef]
- Banerjee, A.; Kamal, C.; Chowdhury, A. Calculation of ground-and excited-state energies of confined helium atom. Phys. Lett. A 2006, 2006, 121–125. [Google Scholar] [CrossRef] [Green Version]
- Flores-Riveros, A.; Aquino, N.; Montgomery, H.E., Jr. Spherically compressed helium atom described by perturbative and variational methods. Phys. Lett. A 2010, 2010, 1246–1252. [Google Scholar] [CrossRef]
- Le Sech, C.; Banerjee, A. A variational approach to the Dirichlet boundary condition: Application to confined H−, He and Li. J. Phys. B 2011, 2011, 105003. [Google Scholar] [CrossRef]
- Si, T.-Y.; Bao, C.-G.; Li, B.-W. Energy spectra of the confined atoms obtained by using B-splines. Commun. Theor. Phys. 2001, 2001, 195–200. [Google Scholar]
- Montgomery, H.E., Jr.; Aquino, N.; Flores-Riveros, A. The ground state energy of a helium atom under strong confinement. Phys. Lett. A 2010, 2010, 2044–2047. [Google Scholar] [CrossRef]
- Aquino, N.; Flores-Riveros, A.; Rivas-Silva, J.F. The compressed helium atom variationally treated via a correlated Hylleraas wave function. Phys. Lett. A 2003, 2003, 326–336. [Google Scholar] [CrossRef]
- Flores-Riveros, A.; Rodríguez-Contreras, A. Compression effects in helium-like atoms (Z = 1, …, 5) constrained by hard spherical walls. Phys. Lett. A 2008, 2008, 6175–6182. [Google Scholar] [CrossRef]
- Laughlin, C.; Chu, S.I. A highly accurate study of a helium atom under pressure. J. Phys. A 2009, 2009, 265004. [Google Scholar] [CrossRef]
- Wilson, C.L.; Montgomery, H.E., Jr.; Sen, K.D.; Thompson, D.C. Electron correlation energy in confined two—electron systems. Phys. Lett. A 2010, 2010, 4415–4419. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, H.E., Jr.; Pupyshev, V.I. Confined helium: excited singlet and triplet states. Phys. Lett. A 2013, 2013, 2880–2883. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Saha, J.K.; Mukherjee, P.K.; Mukherjee, T.K. Precise estimation of the energy levels of two—electron atoms under spherical confinement. Phys. Scr. 2013, 2013, 065305. [Google Scholar] [CrossRef]
- Montgomery, H.E., Jr.; Pupyshev, V.I. Confined two—electron systems: excited singlet and triplet S states. Theor. Chem. Acc. 2015, 2015, 1598. [Google Scholar] [CrossRef]
- Saha, J.; Bhattacharyya, S.; Mukherjee, T.K. Ritz variational calculation for the singly excited states of compressed two—electron atoms. Int. J. Quantum Chem. 2016, 2016, 1802–1813. [Google Scholar] [CrossRef]
- Yakar, Y.; Çakir, B.; Özmen, A. Computation of ionization and various excited state energies ofhelium and helium-like quantum dots. Int. J. Quant. Chem. 2011, 2011, 4139–4149. [Google Scholar] [CrossRef]
- Doma, S.B.; El-Gammal, F.N. Application of variational Monte Carlo method to the confined helium atom. J. Theor. Appl. Phys. 2012, 2012, 28. [Google Scholar] [CrossRef] [Green Version]
- Sarsa, A.; Le Sech, C. Variational Monte Carlo method with dirichlet boundary conditions: Application to the study of confined systems by impenetrable surfaces with different symmetries. J. Chem. Theory Comput. 2011, 2011, 2786–2794. [Google Scholar] [CrossRef] [PubMed]
- Young, T.D.; Vargas, R.; Garza, J. A Hartree–Fock study of the confined helium atom: Local and global basis set approaches. Phys. Lett. A 2016, 2016, 712–717. [Google Scholar] [CrossRef]
- Pupyshev, V.I.; Montgomery, H.E., Jr. One-and multiconfigurational study of excited states of He atom in a small impenetrable cavity. Theor. Chem. Acc. 2017, 2017, 138. [Google Scholar] [CrossRef]
- Parr, R.G.; Yang, W. Density Functional Theory of Atoms and Molecules; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
- Fiolhais, C.; Nogueira, F.; Marques, M. A Primer in Density Functional Theory; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Engel, E.; Dreizler, R.M. Density Functional Theory: An Advance Course (Theoretical and Mathematical Physics); Springer: New York, NY, USA, 2011. [Google Scholar]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 1988, 3098–3100. [Google Scholar] [CrossRef]
- Garza, J.; Vargas, R.; Vela, A. Numerical self-consistent-field method to solve the Kohn-Sham equations in confined many-electron atoms. Phys. Rev. E 1998, 1998, 3949–3954. [Google Scholar] [CrossRef]
- Duarte-Alcaráz, F.-A.; Martínez-Sánchez, M.-A.; Rivera-Almazo, M.; Vargas, R.; Rosas-Burgos, R.-A.; Garza, J. Testing one-parameter hybrid exchange functionals in confined atomic systems. J. Phys. B 2019, 2019, 135002. [Google Scholar] [CrossRef]
- Aquino, N.; Flores-Riveros, A.; Rivas-Silva, J.F.; Sen, K.D. Confined helium atom low-lying S states analyzed through correlated Hylleraas wave functions and the Kohn–Sham model. J. Chem. Phys. 2006, 2006, 054311. [Google Scholar] [CrossRef]
- Perdew, J.P.; Wang, Y. Accurate and simple analytic representation of the electron–gas correlation energy. Phys. Rev. B 1992, 1992, 13244–13249. [Google Scholar] [CrossRef]
- Waugh, S.; Chowdhury, A.; Banerjee, A. On the variation of polarizability and hyperpolarizability of a confined atom with the strength of confinement: A case study of a helium atom. J. Phys. B 2010, 2010, 225002. [Google Scholar] [CrossRef]
- Vyboishchikov, S.F. Modeling Exact Exchange Potential in Spherically Confined Atoms. J. Comput. Chem. 2015, 2015, 2037–2043. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Espinosa, M.; Garza, J.; Galván, M. Confinement effects on the spin potential of first row transition metal cations. Philos. Mag. 2017, 2017, 284–297. [Google Scholar] [CrossRef]
- Vyboishchikov, S.F. Correlation energy, correlated electron density, and exchange-correlation potential in some spherically confined atoms. J. Comput. Chem. 2016, 2016, 2677–2686. [Google Scholar] [CrossRef] [PubMed]
- Vyboishchikov, S.F. A Simple Local Correlation Energy Functional for Spherically Confined Atoms from ab Initio Correlation Energy Density. ChemPhysChem 2017, 2017, 3478–3484. [Google Scholar] [CrossRef]
- van Faassen, M. Atoms in boxes: From confined atoms to electron-atom scattering. J. Chem. Phys. 2009, 2009, 104108. [Google Scholar]
- Shannon, C.E. Prediction and Entropy of Printed English. Bell Sys. Tech. J. 1951, 1951, 50–64. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I.; Mycielski, J. Uncertainty relations for information entropy in wave mechanics. Commun. Math. Phys. 1975, 1975, 129–132. [Google Scholar] [CrossRef]
- Ou, J.-H.; Ho, Y.K. Benchmark calculations of Rényi, Tsallis entropies, and Onicescu information energy for ground state helium using correlated Hylleraas wave functions. Int. J. Quantum Chem. 2019, 119, e25928. [Google Scholar] [CrossRef]
- Sen, K.D. Characteristic features of Shannon information entropy of confined atoms. J. Chem. Phys. 2005, 2005, 074110. [Google Scholar] [CrossRef]
- Jiao, L.G.; Zan, L.R.; Zhang, Y.Z.; Ho, Y.K. Benchmark values of Shannon entropy for spherically confined hydrogen atom. Int. J. Quant. Chem. 2017, 117, e25375. [Google Scholar] [CrossRef]
- Mukherjee, N.; Roy, A.K. Information-entropic measures in free and confined hydrogen atom. Int. J. Quant. Chem. 2018, 118, e25596. [Google Scholar] [CrossRef]
- Mukherjee, N.; Roy, A.K. Information-entropic measures for non-zero l states of confined hydrogen-like ions. Eur. Phys. J. D 2018, 2018, 118. [Google Scholar]
- Aquino, N.; Flores-Riveros, A.; Rivas-Silva, J.F. Shannon and Fisher entropies for a hydrogen atom under soft spherical confinement. Phys. Lett. A 2013, 2013, 2062–2068. [Google Scholar] [CrossRef]
- Cruz, C.; Díaz-García, S.A.; Olivares-Pilón, H.; Cabrera-Trujillo, R. Many-electron atom confinement by a penetrable planar boundary. Radiat. Effects Defects Solids 2016, 2016, 123–134. [Google Scholar] [CrossRef]
- Ou, J.-H.; Ho, Y.K. Shannon information entropy in position space for the ground and singly excited states of helium with finite confinements. Atoms 2017, 2017, 15. [Google Scholar] [CrossRef] [Green Version]
- Ou, J.-H.; Ho, Y.K. Shannon information entropy in position space for doubly excited states of helium with finite confinements. Chem. Phys. Lett. 2017, 2017, 116–120. [Google Scholar] [CrossRef]
- Rodriguez-Bautista, M.; Vargas, R.; Aquino, N.; Garza, J. Electron-density delocalization in many-electron atoms confined by penetrable walls: A Hartree–Fock study. Int. J. Quant. Chem. 2018, 118, e25571. [Google Scholar] [CrossRef]
- Martínez-Sánchez, M.-A.; Vargas, R.; Garza, J. Shannon Entropy for the Hydrogen Atom Confined by Four Different Potentials. Quantum Rep. 2019, 2019, 208–218. [Google Scholar] [CrossRef] [Green Version]
- Restrepo Cuartas, J.P.; Sanz-Vicario, J.L. nformation and entanglement measures applied to the analysis of complexity in doubly excited states of helium. Phys. Rev. A 2015, 2015, 052301. [Google Scholar] [CrossRef] [Green Version]
- Brual, G.; Rothstein, S.M. Rare gas interactions using an improved statistical method. J. Chem. Phys. 1978, 1978, 1177–1183. [Google Scholar] [CrossRef]
- Lee, C.; Wang, Y.; Parr, R.G. Development of the Colle–Salvetti correlation–energy formula into a functional of the electron density. Phys. Rev. B 1988, 1988, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, A.K.; Singh, R.; Deb, B.M. Density-functional calculations for doubly excited states of He, Li+, Be2+ and B3+ (1,3Se, 3Po, 1,3De, 1,3Po, 1Ge,). J. Phys. B 1997, 1997, 4763–4782. [Google Scholar] [CrossRef]
- Roy, A.K.; Singh, R.; Deb, B.M. Density functional calculations on triply excited states of lithium isoelectronic sequence. Int. J. Quant. Chem. 1997, 1997, 317–332. [Google Scholar] [CrossRef]
- Roy, A.K.; Deb, B.M. Atomic inner-shell transitions: A density functional approach. Phys. Lett. A 1997, 1997, 465–471. [Google Scholar] [CrossRef]
- Roy, A.K.; Chu, S.I. Density-functional calculations on singly and doubly excited Rydberg states of many-electron atoms. Phys. Rev. A 2002, 2002, 052508. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.K. Studies on the hollow states of atomic lithium using a density functional approach. J. Phys. B 2004, 2004, 4369–4386. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.K. Density functional studies on the hollow resonances in the Li-isoelectronic sequence (Z = 4–10). J. Phys. B. 2005, 2005, 1591–1605. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.K.; Jalbout, A.F. Ground and excited states of Li−, Be∓ through a density-based approach. Chem. Phys. Lett. 2007, 2007, 355–360. [Google Scholar] [CrossRef] [Green Version]
- Sahni, V.; Harbola, M. Quantum-Mechanical interpretation of the local many-body potential of density-functional theory. Int. J. Quant. Chem. Symp. 1990, 1990, 569–584. [Google Scholar] [CrossRef]
- Sahni, V.; Li, Y.; Harbola, M. Atomic structure in the Pauli-correlated approximation. Phys. Rev. A 1992, 1992, 1434–1448. [Google Scholar] [CrossRef]
- Roy, A.K. Calculation of the spiked harmonic oscillators through a generalized pseudospectral method. Phys. Lett. A 2004, 2004, 231–238. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.K. Calculation of the bound states of power-law and logarithmic potentials through a generalized pseudospectral method. J. Phys. G 2004, 2004, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.K. The generalized pseudospectral approach to the bound states of Húlthen and Yukawa potential. Pramana J. Phys. 2005, 2005, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.K. Studies on some singular potentials in quantum mechanics. Int. J. Quant. Chem. 2005, 2005, 861–870. [Google Scholar] [CrossRef] [Green Version]
- Guevara, N.L.; Sagar, R.P.; Esquivel, R.O. Information uncertainty-type inequalities in atomic systems. J. Chem. Phys. 2003, 2003, 7030–7036. [Google Scholar] [CrossRef]
- Gadre, S.R.; Sears, S.B.; Chakravorty, S.J.; Bendale, R.D. Some novel characteristics of atomic information entropies. Phys. Rev. A 1985, 1985, 2602–2606. [Google Scholar] [CrossRef]
- Amovilli, C.; Floris, F.M. Shannon entropy in atoms: a test for the assessment of density functionals in Kohn–Sham theory. Computation 2018, 2018, 36. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-H.; Ho, Y.K. Shannon information entropy in position space for two-electron atomic systems. Chem. Phys. Lett. 2015, 2015, 261–264. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-H.; Ho, Y.K. Shannon, Rényi, Tsallis Entropies and Onicescu Information Energy for Low-Lying Singly Excited States of Helium. Atoms 2019, 2019, 70. [Google Scholar]
Species | X-Only | XC-Wigner | XC-LYP | Literature 1 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S | S | S | S | S | S | S | S | S | S | S | S | ||
0.1 | −6.2534 | 12.855 | 6.5744 | −6.2534 | 12.855 | 6.5744 | −6.2534 | 12.855 | 6.5744 | ||||
0.3 | −3.004 | 9.580 | 6.576 | −3.004 | 9.580 | 6.576 | −3.004 | 9.580 | 6.576 | −2.988 | 9.488 | 6.5 | |
0.5 | −1.525 | 8.075 | 6.550 | −1.525 | 8.075 | 6.550 | −1.525 | 8.075 | 6.550 | −1.498 | 8.023 | 6.525 | |
1 | 0.389 | 6.118 | 6.507 | 0.387 | 6.119 | 6.506 | 0.388 | 6.118 | 6.506 | 0.4326 | 6.078 | 6.51 | |
He 2,3 | 1.4 | 1.22 | 5.273 | 6.493 | 1.22 | 5.276 | 6.49 | 1.22 | 5.327 | 6.547 | 1.2739 | 5.234 | 6.508 |
2 | 1.97 | 4.547 | 6.517 | 1.96 | 4.555 | 6.515 | 1.96 | 4.549 | 6.509 | 2.0097 | 4.519 | 6.528 | |
3 | 2.50 | 4.061 | 6.561 | 2.48 | 4.080 | 6.560 | 2.50 | 4.068 | 6.568 | 2.5241 | 4.057 | 6.581 | |
4 | 2.65 | 3.943 | 6.593 | 2.63 | 3.969 | 6.599 | 2.64 | 3.952 | 6.592 | 2.6651 | 3.945 | 6.61 | |
5 | 2.68 | 3.921 | 6.608 | 2.65 | 3.95 | 6.60 | 2.67 | 3.932 | 6.602 | 2.7042 | 3.918 | 6.622 | |
6 | 2.69 | 3.918 | 6.608 | 2.66 | 3.95 | 6.61 | 2.68 | 3.93 | 6.61 | 2.7106 | 3.914 | 6.625 | |
7 | 2.69 | 3.918 | 6.608 | 2.66 | 3.95 | 6.61 | 2.68 | 3.93 | 6.61 | 2.7117 | 3.913 | 6.625 | |
0.1 | −6.2665 | 12.860 | 6.5935 | −6.2665 | 12.860 | 6.5935 | −6.2665 | 12.860 | 6.5935 | ||||
0.3 | −3.050 | 9.604 | 6.554 | −3.050 | 9.604 | 6.554 | −3.050 | 9.604 | 6.554 | −3.034 | 9.538 | 6.504 | |
0.8 | −0.392 | 6.890 | 6.498 | −0.393 | 6.891 | 6.498 | −0.392 | 6.890 | 6.498 | −0.353 | 6.849 | 6.496 | |
1 | 0.12 | 6.376 | 6.496 | 0.121 | 6.378 | 6.499 | 0.122 | 6.377 | 6.499 | 0.1659 | 6.335 | 6.501 | |
Li+ 4,5 | 2 | 1.135 | 5.431 | 6.566 | 1.12 | 5.440 | 6.56 | 1.13 | 5.43 | 6.56 | 1.174 | 5.4 | 6.574 |
2.5 | 1.22 | 5.361 | 6.581 | 1.21 | 5.373 | 6.58 | 1.22 | 5.36 | 6.58 | 1.2618 | 5.331 | 6.593 | |
3 | 1.24 | 5.346 | 6.586 | 1.23 | 5.358 | 6.58 | 1.24 | 5.34 | 6.58 | 1.2878 | 5.313 | 6.601 | |
4 | 1.25 | 5.343 | 6.593 | 1.23 | 5.355 | 6.58 | 1.24 | 5.34 | 6.58 | 1.2942 | 5.309 | 6.603 | |
7 | 1.25 | 5.343 | 6.593 | 1.23 | 5.355 | 6.58 | 1.24 | 5.34 | 6.58 | ||||
0.1 | −6.2801 | 12.866 | 6.5859 | −6.2801 | 12.866 | 6.5859 | −6.2801 | 12.866 | 6.5859 | ||||
0.3 | −3.102 | 9.636 | 6.534 | −3.102 | 9.636 | 6.534 | −3.102 | 9.636 | 6.534 | ||||
0.5 | −1.725 | 8.226 | 6.501 | −1.725 | 8.226 | 6.501 | −1.725 | 8.226 | 6.501 | ||||
1 | −0.229 | 6.748 | 6.519 | −0.231 | 6.750 | 6.519 | −0.229 | 6.748 | 6.519 | ||||
Be2+ | 1.5 | 0.191 | 6.373 | 6.564 | 0.186 | 6.378 | 6.564 | 0.190 | 6.374 | 6.564 | |||
2 | 0.27 | 6.311 | 6.581 | 0.26 | 6.317 | 6.577 | 0.26 | 6.312 | 6.572 | ||||
2.5 | 0.28 | 6.305 | 6.585 | 0.27 | 6.311 | 6.581 | 0.26 | 6.306 | 6.566 | ||||
3 | 0.28 | 6.305 | 6.585 | 0.27 | 6.311 | 6.581 | 0.26 | 6.306 | 6.566 | ||||
7 | 0.28 | 6.305 | 6.585 | 0.27 | 6.311 | 6.581 | 0.26 | 6.306 | 6.566 |
Species | X-Only | XC-Wigner | XC-LYP | |||||||
---|---|---|---|---|---|---|---|---|---|---|
S | S | S | S | S | S | S | S | S | ||
0.1 | −6.2172 | 14.190 | 7.9728 | −6.2172 | 14.190 | 7.9728 | −6.2172 | 14.190 | 7.9728 | |
0.5 | −1.4472 | 9.376 | 7.9288 | −1.4472 | 9.376 | 7.9288 | −1.4472 | 9.3756 | 7.9288 | |
1 | 0.547 | 7.333 | 7.880 | 0.547 | 7.333 | 7.880 | 0.547 | 7.333 | 7.880 | |
2 | 2.417 | 5.409 | 7.826 | 2.415 | 5.410 | 7.825 | 2.417 | 5.409 | 7.826 | |
He 1 | 4 | 3.956 | 3.86 | 7.819 | 3.948 | 3.87 | 7.818 | 3.953 | 3.86 | 7.813 |
6 | 4.60 | 3.22 | 7.82 | 4.59 | 3.23 | 7.82 | 4.59 | 3.23 | 7.82 | |
6.5 | 4.71 | 3.11 | 7.82 | 4.69 | 3.13 | 7.82 | 4.69 | 3.13 | 7.82 | |
7.5 | 4.87 | 2.94 | 7.81 | 4.85 | 2.96 | 7.81 | 4.85 | 2.97 | 7.82 | |
8.5 | 4.99 | 2.81 | 7.80 | 4.96 | 2.84 | 7.80 | 4.96 | 2.85 | 7.81 | |
10 | 5.10 | 2.69 | 7.79 | 5.06 | 2.72 | 7.78 | 5.03 | 2.75 | 7.78 | |
0.1 | −6.2246 | 14.191 | 7.9664 | −6.2246 | 14.191 | 7.9664 | −6.2246 | 14.191 | 7.9664 | |
0.5 | −1.4905 | 9.392 | 7.9015 | −1.4905 | 9.392 | 7.9015 | −1.4905 | 9.392 | 7.9015 | |
1 | 0.442 | 7.401 | 7.843 | 0.442 | 7.401 | 7.843 | 0.442 | 7.401 | 7.843 | |
1.5 | 1.481 | 6.335 | 7.816 | 1.480 | 6.336 | 7.816 | 1.481 | 6.336 | 7.817 | |
Li+ | 2 | 2.141 | 5.669 | 7.810 | 2.138 | 5.671 | 7.809 | 2.140 | 5.669 | 7.809 |
3 | 2.910 | 4.90 | 7.810 | 2.905 | 4.90 | 7.805 | 2.909 | 4.905 | 7.814 | |
4 | 3.32 | 4.49 | 7.81 | 3.312 | 4.49 | 7.802 | 3.31 | 4.49 | 7.80 | |
7 | 3.70 | 4.07 | 7.77 | 3.68 | 4.09 | 7.77 | 3.69 | 4.09 | 7.78 | |
8.5 | 3.72 | 4.05 | 7.77 | 3.70 | 4.07 | 7.77 | 3.70 | 4.07 | 7.77 | |
10 | 3.72 | 4.05 | 7.77 | 3.70 | 4.07 | 7.77 | 3.70 | 4.07 | 7.77 | |
0.1 | −6.2320 | 14.191 | 7.9590 | −6.2320 | 14.191 | 7.9590 | −6.2320 | 14.191 | 7.9590 | |
0.5 | −1.5376 | 9.415 | 7.8774 | −1.537 | 9.415 | 7.8774 | −1.5376 | 9.415 | 7.8774 | |
1 | 0.322 | 7.499 | 7.821 | 0.322 | 7.500 | 7.822 | 0.322 | 7.499 | 7.821 | |
2 | 1.829 | 5.981 | 7.810 | 1.826 | 5.983 | 7.809 | 1.828 | 5.981 | 7.809 | |
Be2+ | 3 | 2.42 | 5.38 | 7.80 | 2.141 | 5.39 | 7.531 | 2.418 | 5.38 | 7.798 |
4 | 2.66 | 5.12 | 7.78 | 2.651 | 5.13 | 7.781 | 2.656 | 5.12 | 7.776 | |
5 | 2.73 | 5.03 | 7.76 | 2.72 | 5.05 | 7.77 | 2.72 | 5.04 | 7.76 | |
6 | 2.75 | 5.02 | 7.77 | 2.73 | 5.03 | 7.76 | 2.74 | 5.02 | 7.76 | |
20 | 2.75 | 5.02 | 7.77 | 2.73 | 5.03 | 7.76 | 2.74 | 5.02 | 7.76 |
Species | X-Only | XC-Wigner | XC-LYP | |||||||
---|---|---|---|---|---|---|---|---|---|---|
S | S | S | S | S | S | S | S | S | ||
0.5 | −1.392 | 8.596 | 7.204 | −1.392 | 8.596 | 7.204 | −1.392 | 8.596 | 7.204 | |
0.8 | −0.031 | 7.213 | 7.182 | −0.031 | 7.213 | 7.182 | −0.031 | 7.213 | 7.182 | |
1 | 0.60 | 6.570 | 7.170 | 0.60 | 6.570 | 7.170 | 0.60 | 6.570 | 7.170 | |
3 | 3.26 | 4.04 | 7.30 | 3.26 | 4.05 | 7.31 | 3.26 | 4.04 | 7.30 | |
He 1 | 5 | 4.09 | 3.49 | 7.58 | 4.08 | 3.50 | 7.58 | 4.08 | 3.50 | 7.58 |
6 | 4.35 | 3.34 | 7.69 | 4.32 | 3.36 | 7.68 | 4.33 | 3.35 | 7.68 | |
7 | 4.54 | 3.23 | 7.77 | 4.51 | 3.25 | 7.76 | 4.51 | 3.25 | 7.76 | |
7.6 | 4.63 | 3.18 | 7.81 | 4.58 | 3.21 | 7.79 | 4.58 | 3.21 | 7.79 | |
8 | 4.68 | 3.15 | 7.83 | 4.65 | 3.18 | 7.83 | 4.64 | 3.18 | 7.82 | |
10 | 4.86 | 3.04 | 7.90 | 4.82 | 3.08 | 7.90 | 4.78 | 3.10 | 7.88 | |
0.5 | −1.437 | 8.620 | 7.183 | −1.437 | 8.620 | 7.183 | −1.437 | 8.620 | 7.183 | |
0.8 | −0.121 | 7.284 | 7.163 | −0.121 | 7.284 | 7.163 | −0.121 | 7.284 | 7.163 | |
1 | 0.471 | 6.693 | 7.164 | 0.470 | 6.694 | 7.164 | 0.47 | 6.69 | 7.16 | |
1.5 | 1.44 | 5.91 | 7.35 | 1.438 | 5.91 | 7.358 | 1.44 | 5.91 | 7.35 | |
Li+ | 2 | 2.009 | 5.29 | 7.299 | 2.005 | 5.30 | 7.305 | 2.008 | 5.30 | 7.308 |
3 | 2.65 | 4.85 | 7.50 | 2.64 | 4.86 | 7.50 | 2.653 | 4.86 | 7.513 | |
6 | 3.33 | 4.47 | 7.80 | 3.31 | 4.49 | 7.80 | 3.31 | 4.48 | 7.79 | |
8 | 3.39 | 4.45 | 7.84 | 3.36 | 4.47 | 7.83 | 3.37 | 4.47 | 7.84 | |
9 | 3.40 | 4.45 | 7.85 | 3.36 | 4.47 | 7.83 | 3.37 | 4.47 | 7.84 | |
10 | 3.40 | 4.45 | 7.85 | 3.37 | 4.47 | 7.84 | 3.37 | 4.47 | 7.84 | |
0.5 | −1.490 | 8.658 | 7.168 | −1.490 | 8.658 | 7.168 | −1.490 | 8.658 | 7.168 | |
0.8 | −0.235 | 7.402 | 7.167 | −0.235 | 7.402 | 7.167 | −0.235 | 7.402 | 7.167 | |
1.2 | 0.698 | 6.532 | 7.23 | 0.697 | 6.534 | 7.231 | 0.698 | 6.532 | 7.23 | |
2 | 1.589 | 5.857 | 7.446 | 1.585 | 5.861 | 7.446 | 1.588 | 5.858 | 7.446 | |
Be2+ | 2.5 | 1.892 | 5.670 | 7.562 | 1.88 | 5.67 | 7.55 | 1.890 | 5.701 | 7.591 |
5 | 2.37 | 5.41 | 7.78 | 2.35 | 5.43 | 7.78 | 2.36 | 5.42 | 7.78 | |
6 | 2.38 | 5.41 | 7.79 | 2.36 | 5.42 | 7.78 | 2.37 | 5.42 | 7.79 | |
10 | 2.38 | 5.41 | 7.79 | 2.36 | 5.42 | 7.78 | 2.37 | 5.42 | 7.79 |
Species | X-only | XC-Wigner | XC-LYP | |||||||
---|---|---|---|---|---|---|---|---|---|---|
S | S | S | S | S | S | S | S | S | ||
0.5 | −1.3053 | 9.110 | 7.8047 | −1.3053 | 9.110 | 7.8047 | −1.3053 | 9.110 | 7.8047 | |
1 | 0.707 | 7.073 | 7.780 | 0.706 | 7.073 | 7.779 | 0.707 | 7.073 | 7.780 | |
1.5 | 1.828 | 5.938 | 7.766 | 1.826 | 5.939 | 7.765 | 1.827 | 5.938 | 7.765 | |
2.6 | 3.155 | 4.640 | 7.795 | 3.150 | 4.645 | 7.795 | 3.153 | 4.641 | 7.794 | |
He 1 | 4 | 3.960 | 3.957 | 7.917 | 3.951 | 3.967 | 7.918 | 3.957 | 3.960 | 7.917 |
5 | 4.327 | 3.687 | 8.014 | 4.317 | 3.699 | 8.016 | 4.323 | 3.691 | 8.014 | |
6 | 4.61 | 3.48 | 8.09 | 4.60 | 3.50 | 8.10 | 4.60 | 3.49 | 8.09 | |
7 | 4.85 | 3.33 | 8.18 | 4.83 | 3.34 | 8.17 | 4.83 | 3.34 | 8.17 | |
8 | 5.04 | 3.19 | 8.23 | 5.03 | 3.21 | 8.24 | 5.02 | 3.22 | 8.24 | |
10 | 5.36 | 2.97 | 8.33 | 5.35 | 2.99 | 8.34 | 5.27 | 3.04 | 8.24 | |
0.5 | −1.339 | 9.129 | 7.790 | −1.339 | 9.129 | 7.790 | −1.339 | 9.129 | 7.790 | |
0.8 | −0.003 | 7.774 | 7.771 | −0.003 | 7.774 | 7.771 | −0.003 | 7.774 | 7.771 | |
1 | 0.601 | 7.161 | 7.762 | 0.601 | 7.161 | 7.762 | 0.601 | 7.161 | 7.762 | |
2.5 | 2.611 | 5.27 | 7.881 | 2.608 | 5.280 | 7.888 | 2.611 | 5.277 | 7.888 | |
Li+ | 3 | 2.918 | 5.042 | 7.960 | 2.914 | 5.047 | 7.961 | 2.917 | 5.043 | 7.960 |
4 | 3.373 | 4.72 | 8.093 | 3.36 | 4.73 | 8.09 | 3.37 | 4.72 | 8.09 | |
5 | 3.704 | 4.50 | 8.204 | 3.69 | 4.51 | 8.20 | 3.70 | 4.50 | 8.20 | |
6.5 | 4.06 | 4.26 | 8.32 | 4.05 | 4.27 | 8.32 | 4.05 | 4.27 | 8.32 | |
7 | 4.16 | 4.20 | 8.36 | 4.15 | 4.21 | 8.36 | 4.14 | 4.21 | 8.35 | |
7.5 | 4.24 | 4.14 | 8.38 | 4.23 | 4.15 | 8.38 | 4.22 | 4.16 | 8.38 | |
10 | 4.53 | 3.97 | 8.50 | 4.51 | 3.99 | 8.50 | 4.46 | 4.03 | 8.49 | |
0.5 | −1.3803 | 9.157 | 7.776 | −1.3803 | 9.157 | 7.776 | −1.3803 | 9.157 | 7.776 | |
0.8 | −0.097 | 7.857 | 7.760 | −0.097 | 7.857 | 7.760 | −0.097 | 7.857 | 7.760 | |
1 | 0.460 | 7.303 | 7.763 | 0.459 | 7.304 | 7.763 | 0.460 | 7.303 | 7.763 | |
2.5 | 2.21 | 5.79 | 8.00 | 2.211 | 5.79 | 8.001 | 2.213 | 5.79 | 8.003 | |
Be2+ | 3 | 2.496 | 5.59 | 8.086 | 2.492 | 5.60 | 8.092 | 2.495 | 5.59 | 8.085 |
4 | 2.911 | 5.32 | 8.231 | 2.907 | 5.32 | 8.227 | 2.909 | 5.32 | 8.229 | |
7 | 3.53 | 4.94 | 8.47 | 3.51 | 4.96 | 8.47 | 3.51 | 4.96 | 8.47 | |
8 | 3.60 | 4.91 | 8.51 | 3.59 | 4.92 | 8.51 | 3.58 | 4.93 | 8.51 | |
8.5 | 3.63 | 4.90 | 8.53 | 3.61 | 4.92 | 8.53 | 3.60 | 4.92 | 8.52 | |
10 | 3.66 | 4.90 | 8.62 | 3.64 | 4.91 | 8.55 | 3.62 | 4.92 | 8.54 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majumdar, S.; Roy, A.K. Shannon Entropy in Confined He-Like Ions within a Density Functional Formalism. Quantum Rep. 2020, 2, 189-207. https://doi.org/10.3390/quantum2010012
Majumdar S, Roy AK. Shannon Entropy in Confined He-Like Ions within a Density Functional Formalism. Quantum Reports. 2020; 2(1):189-207. https://doi.org/10.3390/quantum2010012
Chicago/Turabian StyleMajumdar, Sangita, and Amlan K. Roy. 2020. "Shannon Entropy in Confined He-Like Ions within a Density Functional Formalism" Quantum Reports 2, no. 1: 189-207. https://doi.org/10.3390/quantum2010012
APA StyleMajumdar, S., & Roy, A. K. (2020). Shannon Entropy in Confined He-Like Ions within a Density Functional Formalism. Quantum Reports, 2(1), 189-207. https://doi.org/10.3390/quantum2010012