Interaction between Different Kinds of Quantum Phase Transitions
Abstract
:1. Introduction
2. Our Present CP-PM Juxtaposition
2.1. Preliminaries
- how the monopole pt depends on the pairing coupling constant G; and
- how the superconducting pt depends on the monopole coupling constant V.
2.2. Statistical Mechanics of the Combined Hamiltonian H
- The effective superconductivity index X,
- Its equivalent quantity for the monopole force (the monopolarity indicator W) is
3. Results
3.1. The N-Dependence
3.2. The Monopole-Intensity Quantifier W
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lipkin, H.J.; Meshkov, N.; Glick, A.J. Validity of many-body approximation methods for a solvable model: (I). Exact solutions and perturbation theory. Nucl. Phys. 1965, 62, 188–198. [Google Scholar] [CrossRef]
- Ring, P.; Schuck, P. The Nuclear Many-Body Problem; Springer: Berlin/Heidelberg, Germany, 1980. [Google Scholar]
- Nolting, W. Fundam. Many-Body Physics; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Cambiaggio, M.C.; Plastino, A. Quasi spin pairing and the structure of the Lipkin Model. Z. Phys. A 1978, 288, 153–159. [Google Scholar] [CrossRef]
- Pennini, F.; Plastino, A. Complexity and disequilibrium as telltales of superconductivity. Phys. A 2018, 506, 828–834. [Google Scholar] [CrossRef]
- De Llano, M.; Tolmachev, V.V. Multiple phases in a new statistical boson fermion model of superconductivity. Phys. A 2003, 317, 546–564. [Google Scholar] [CrossRef]
- Uys, H.; Miller, H.G.; Khanna, F.C. Generalized statistics and high-Tc superconductivity. Phys. Lett. A 2001, 289, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Plastino, A.; Ferri, G.L.; Plastino, A.R. Spectral explanation for statistical odd-even staggering in few fermions systems. Quantum Rep. 2021, 3, 166–172. [Google Scholar] [CrossRef]
- Plastino, A.; Moszkowski, S.M. Simplified model for illustrating Hartree-Fock in a Lipkin-model problem. Nuovo Cimento 1978, 47, 470–474. [Google Scholar] [CrossRef]
- Debergh, N.; Stancu, F. The Lipkin–Meshkov–Glick Model and its Deformations through Polynomial Algebras. Proc. Inst. Math. NAS Ukr. 2002, 43, 432–438. [Google Scholar]
- Rossignoli, R.; Plastino, A. Thermal effects and the interplay between pairing and shape deformations. Phys. Rev. C 1985, 32, 1040. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plastino, A.R.; Ferri, G.L.; Plastino, A. Interaction between Different Kinds of Quantum Phase Transitions. Quantum Rep. 2021, 3, 253-261. https://doi.org/10.3390/quantum3020015
Plastino AR, Ferri GL, Plastino A. Interaction between Different Kinds of Quantum Phase Transitions. Quantum Reports. 2021; 3(2):253-261. https://doi.org/10.3390/quantum3020015
Chicago/Turabian StylePlastino, Angel Ricardo, Gustavo Luis Ferri, and Angelo Plastino. 2021. "Interaction between Different Kinds of Quantum Phase Transitions" Quantum Reports 3, no. 2: 253-261. https://doi.org/10.3390/quantum3020015
APA StylePlastino, A. R., Ferri, G. L., & Plastino, A. (2021). Interaction between Different Kinds of Quantum Phase Transitions. Quantum Reports, 3(2), 253-261. https://doi.org/10.3390/quantum3020015