Noise-Assisted Discord-Like Correlations in Light-Harvesting Photosynthetic Complexes
Abstract
:1. Introduction
2. The Model
Quantum Correlations
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ENAQT | Environment assisted quantum transport |
LQU | Local quantum uncertainty |
Flux of local quantum uncertainty |
Appendix A
References
- Stegmann, T.; Szpak, N. Current flow paths in deformed graphene: From quantum transport to classical trajectories in curved space. New J. Phys. 2016, 18, 053016. [Google Scholar] [CrossRef] [Green Version]
- Veldhorst, M.; Snelder, M.; Hoek, M.; Gang, T.; Guduru, V.; Wang, X.; Zeitler, U.; van der Wiel, W.G.; Golubov, A.; Hilgenkamp, H.; et al. Josephson supercurrent through a topological insulator surface state. Nat. Mater. 2012, 11, 417–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beenakker, C.; van Houten, H. Quantum transport in semiconductor nanostructures. Solid State Phys. 1991, 44, 1–228. [Google Scholar]
- Reséndiz-Vázquez, P.; Tschernig, K.; Perez-Leija, A.; Busch, K.; León-Montiel, R.d.J. Topological protection in non-Hermitian Haldane honeycomb lattices. Phys. Rev. Res. 2020, 2, 013387. [Google Scholar] [CrossRef] [Green Version]
- Capasso, F.; Mohammed, K.; Cho, A.Y. Resonant Tunneling through Double Barriers, Perpendicular Quantum Transport Phenomena in Superlattices, and Their Device Applications; Springer: New York, NY, USA, 1988; pp. 99–115. [Google Scholar]
- Plenio, M.B.; Huelga, S.F. Dephasing-assisted transport: Quantum networks and biomolecules. New J. Phys. 2008, 10, 113019. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, Y.W.; Stormer, H.L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201. [Google Scholar] [CrossRef] [Green Version]
- Morales-Curiel, L.F.; León-Montiel, R.d.J. Photochemical dynamics under incoherent illumination: Light harvesting in self-assembled molecular J-aggregates. J. Chem. Phys. 2020, 152, 074304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- León-Montiel, R.d.J.; Kassal, I.; Torres, J.P. Importance of excitation and trapping conditions in photosynthetic environment-assisted energy transport. J. Chem. Phys. B 2014, 118, 10588–10594. [Google Scholar] [CrossRef]
- McCree, K.J. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric. Meteorol. 1971, 9, 191–216. [Google Scholar] [CrossRef]
- Sension, R.J. Quantum path to photosynthesis. Nature 2007, 446, 740–741. [Google Scholar] [CrossRef] [PubMed]
- Engel, G.S.; Calhoun, T.R.; Read, E.L.; Ahn, T.K.; Mančal, T.; Cheng, Y.C.; Blankenship, R.E.; Fleming, G.R. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 2007, 446, 782–786. [Google Scholar] [CrossRef]
- Calhoun, T.R.; Ginsberg, N.S.; Schlau-Cohen, G.S.; Cheng, Y.C.; Ballottari, M.; Bassi, R.; Fleming, G.R. Quantum coherence enabled determination of the energy landscape in light-harvesting complex II. J. Phys. Chem. B 2009, 113, 16291–16295. [Google Scholar] [CrossRef]
- Lee, H.; Cheng, Y.C.; Fleming, G.R. Coherence dynamics in photosynthesis: Protein protection of excitonic coherence. Science 2007, 316, 1462–1465. [Google Scholar] [CrossRef] [Green Version]
- Rebentrost, P.; Mohseni, M.; Kassal, I.; Lloyd, S.; Aspuru-Guzik, A. Environment-assisted quantum transport. New J. Phys. 2009, 11, 033003. [Google Scholar] [CrossRef]
- Caruso, F.; Chin, A.W.; Datta, A.; Huelga, S.F.; Plenio, M.B. Highly efficient energy excitation transfer in light-harvesting complexes: The fundamental role of noise-assisted transport. J. Chem. Phys. 2009, 131, 09B612. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, O.; Meir, Y.; Dubi, Y. Vibration-Assisted and Vibration-Hampered Excitonic Quantum Transport. J. Phys. Chem. Lett. 2018, 9, 3143–3148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Ko, L.; Yang, Z.; Sarovar, M.; Whaley, K.B. Unraveling excitation energy transfer assisted by collective behaviors of vibrations. New J. Phys. 2021. [Google Scholar] [CrossRef]
- Huang, H.L.; Wu, D.; Fan, D.; Zhu, X. Superconducting quantum computing: A review. Sci. China Inf. Sci. 2020, 63, 1–32. [Google Scholar] [CrossRef]
- Merali, Z. Quantum computing: The power of discord. Nat. News 2011, 474, 24–26. [Google Scholar] [CrossRef] [PubMed]
- Brookes, J.C.; Hartoutsiou, F.; Horsfield, A.P.; Stoneham, A.M. Could Humans Recognize Odor by Phonon Assisted Tunneling? Phys. Rev. Lett. 2007, 98, 038101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kominis, I. Quantum relative entropy shows singlet-triplet coherence is a resource in the radical-pair mechanism of biological magnetic sensing. Phys. Rev. Res. 2020, 2, 023206. [Google Scholar] [CrossRef]
- Ball, P. Is photosynthesis quantum-ish? Phys. World 2018, 31, 44–48. [Google Scholar] [CrossRef] [Green Version]
- Sarovar, M.; Ishizaki, A.; Fleming, G.R.; Whaley, K.B. Quantum entanglement in photosynthetic light-harvesting complexes. Nat. Phys. 2010, 6, 462–467. [Google Scholar] [CrossRef]
- Ishizaki, A.; Fleming, G.R. Quantum superpositions in photosynthetic light harvesting: Delocalization and entanglement. New J. Phys. 2010, 12, 055004. [Google Scholar] [CrossRef]
- Whaley, K.B.; Sarovar, M.; Ishizaki, A. Quantum entanglement phenomena in photosynthetic light harvesting complexes. Procedia Chem. 2011, 3, 152–164. [Google Scholar] [CrossRef] [Green Version]
- Fassioli, F.; Olaya-Castro, A. Distribution of entanglement in light-harvesting complexes and their quantum efficiency. New J. Phys. 2010, 12, 085006. [Google Scholar] [CrossRef] [Green Version]
- Datta, S. Quantum Transport: Atom to Transistor; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- León-Montiel, R.d.J.; Torres, J.P. Highly efficient noise-assisted energy transport in classical oscillator systems. Phys. Rev. Lett. 2013, 110, 218101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenna, R.E.; Matthews, B.W. Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola. Nature 1975, 258, 573. [Google Scholar] [CrossRef]
- Sybesma, C.; Olson, J.M. Transfer of chlorophyl excitation energy in green photosynthetic bacteria. Proc. Natl. Acad. Sci. USA 1963, 49, 248. [Google Scholar] [CrossRef] [Green Version]
- May, V.; Kühn, O. Charge and Energy Transfer Dynamics in Molecular Systems; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Adolphs, J.; Renger, T. How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria. Biophys. J. 2006, 91, 2778–2797. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Silbey, R.J. Excitation energy transfer in a non-Markovian dynamical disordered environment: Localization, narrowing, and transfer efficiency. J. Phys. Chem. B 2011, 115, 5499. [Google Scholar] [CrossRef] [PubMed]
- Mohseni, M.; Shabani, A.; Lloyd, S.; Rabitz, H. Energy-scales convergence for optimal and robust quantum transport in photosynthetic complexes. J. Chem. Phys. 2014, 140, 035102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haken, H.; Reineker, P. The coupled coherent and incoherent motion of excitons and its influence on the line shape of optical absorption. Z. Phys. 1972, 249, 253. [Google Scholar] [CrossRef]
- Haken, H.; Strobl, G. An exactly solvable model for coherent and incoherent exciton motion. Z. Phys. A Hadrons Nucl. 1973, 262, 135. [Google Scholar] [CrossRef]
- Kriete, B.; Lüttig, J.; Kunsel, T.; Malỳ, P.; Jansen, T.L.; Knoester, J.; Brixner, T.; Pshenichnikov, M.S. Interplay between structural hierarchy and exciton diffusion in artificial light harvesting. Nat. Commun. 2019, 10, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moix, J.M.; Khasin, M.; Cao, J. Coherent quantum transport in disordered systems: I. The influence of dephasing on the transport properties and absorption spectra on one-dimensional systems. New J. Phys. 2013, 15, 085010. [Google Scholar] [CrossRef]
- Breuer, H.P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Ishizaki, A.; Fleming, G.R. Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature. Proc. Natl. Acad. Sci. USA 2009, 106, 17255–17260. [Google Scholar] [CrossRef] [Green Version]
- Fujita, T.; Brookes, J.C.; Saikin, S.K.; Aspuru-Guzik, A. Memory-assisted exciton diffusion in the chlorosome light-harvesting antenna of green sulfur bacteria. J. Phys. Chem. Lett. 2012, 3, 2357–2361. [Google Scholar] [CrossRef] [Green Version]
- Valleau, S.; Saikin, S.K.; Yung, M.H.; Guzik, A.A. Exciton transport in thin-film cyanine dye J-aggregates. J. Chem. Phys. 2012, 137, 034109. [Google Scholar] [CrossRef] [Green Version]
- Hestand, N.J.; Tempelaar, R.; Knoester, J.; Jansen, T.L.; Spano, F.C. Exciton mobility control through sub-Å packing modifications in molecular crystals. Phys. Rev. B 2015, 91, 195315. [Google Scholar] [CrossRef] [Green Version]
- Saikin, S.K.; Shakirov, M.A.; Kreisbeck, C.; Peskin, U.; Proshin, Y.N.; Aspuru-Guzik, A. On the long-range exciton transport in molecular systems: The application to H-aggregated heterotriangulene chains. J. Phys. Chem. C 2017, 121, 24994–25002. [Google Scholar] [CrossRef]
- Henderson, L.; Vedral, V. Classical, quantum and total correlations. J. Phys. A Math. Theor. 2001, 34, 6899–6905. [Google Scholar] [CrossRef]
- Ollivier, H.; Zurek, W.H. Quantum Discord: A Measure of the Quantumness of Correlations. Phys. Rev. Lett. 2001, 88, 017901. [Google Scholar] [CrossRef] [PubMed]
- Dakić, B.; Lipp, Y.O.; Ma, X.; Ringbauer, M.; Kropatschek, S.; Barz, S.; Paterek, T.; Vedral, V.; Zeilinger, A.; Brukner, Č.; et al. Quantum discord as resource for remote state preparation. Nat. Phys. 2012, 8, 666–670. [Google Scholar] [CrossRef] [Green Version]
- Domínguez-Serna, F.A.; Mendieta-Jimenez, F.J.; Rojas, F. Relationship between the field local quadrature and the quantum discord of a photon-added correlated channel under the influence of scattering and phase fluctuation noise. Quantum Inf. Process. 2017, 16, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Fedorova, A.; Byrnes, T.; Pyrkov, A.N. Super-quantum discord in ferromagnetic and antiferromagnetic materials. Quantum Inf. Process. 2019, 18, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Singh, H.; Chakraborty, T.; Panigrahi, P.K.; Mitra, C. Experimental estimation of discord in an antiferromagnetic Heisenberg compound Cu(NO3)2·2.5H2O. Quantum Inf. Process. 2015, 14, 951–961. [Google Scholar] [CrossRef]
- Girolami, D.; Tufarelli, T.; Adesso, G. Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 2013, 110, 240402. [Google Scholar] [CrossRef] [Green Version]
- Qinglong, T.; Youneng, G. Local quantum uncertainty in a two-qubit system due to classical environmental noise. Laser Phys. 2020, 30, 115201. [Google Scholar]
- Kassal, I.; Aspuru-Guzik, A. Environment-assisted quantum transport in ordered systems. New J. Phys. 2012, 14, 053041. [Google Scholar] [CrossRef]
- Pelzer, K.M.; Fidler, A.F.; Griffin, G.B.; Gray, S.K.; Engel, G.S. The dependence of exciton transport efficiency on spatial patterns of correlation within the spectral bath. New J. Phys. 2013, 15, 095019. [Google Scholar] [CrossRef] [Green Version]
- Manzano, D. Quantum transport in networks and photosynthetic complexes at the steady state. PLoS ONE 2013, 8, e57041. [Google Scholar] [CrossRef]
- Anderson, P.W. Absence of Diffusion in Certain Random Lattices; World Scientific: Toh Tuck Link, Singapore, 2004; pp. 79–93. [Google Scholar]
- León-Montiel, R.d.J.; Vallés, A.; Moya-Cessa, H.M.; Torres, J.P. Coherent delocalization: Views of entanglement in different scenarios. Laser Phys. Lett. 2015, 12, 085204. [Google Scholar] [CrossRef]
- Román-Ancheyta, R.; Çakmak, B.; León-Montiel, R.d.J.; Perez-Leija, A. Quantum transport in non-Markovian dynamically disordered photonic lattices. Phys. Rev. A 2021, 103, 033520. [Google Scholar] [CrossRef]
- Moreira, S.V.; Marques, B.; Paiva, R.R.; Cruz, L.S.; Soares-Pinto, D.O.; Semião, F.L. Enhancing quantum transport efficiency by tuning non-Markovian dephasing. Phys. Rev. A 2020, 101, 012123. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reséndiz-Vázquez, P.; Román-Ancheyta, R.; de J. León-Montiel, R. Noise-Assisted Discord-Like Correlations in Light-Harvesting Photosynthetic Complexes. Quantum Rep. 2021, 3, 262-271. https://doi.org/10.3390/quantum3020016
Reséndiz-Vázquez P, Román-Ancheyta R, de J. León-Montiel R. Noise-Assisted Discord-Like Correlations in Light-Harvesting Photosynthetic Complexes. Quantum Reports. 2021; 3(2):262-271. https://doi.org/10.3390/quantum3020016
Chicago/Turabian StyleReséndiz-Vázquez, Pablo, Ricardo Román-Ancheyta, and Roberto de J. León-Montiel. 2021. "Noise-Assisted Discord-Like Correlations in Light-Harvesting Photosynthetic Complexes" Quantum Reports 3, no. 2: 262-271. https://doi.org/10.3390/quantum3020016
APA StyleReséndiz-Vázquez, P., Román-Ancheyta, R., & de J. León-Montiel, R. (2021). Noise-Assisted Discord-Like Correlations in Light-Harvesting Photosynthetic Complexes. Quantum Reports, 3(2), 262-271. https://doi.org/10.3390/quantum3020016