Ring and Linear Structures of CdTe Clusters
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Linear Structures of CdTe Clusters
3.2. Ring Structures of CdTe Clusters
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yavorskyi, R.; Saliy, Y.; Nykyruy, L.; Wisz, G.; Adamiak, S.; Cieniek, B.; Naidych, B.; Yavorskyi, Y. Thermally Evaporated CdTe Thin Films on Glass and (100) Silicon Substrates for Solar Cells Applications. Appl. Nanosci. 2023, 13, 7275–7287. [Google Scholar] [CrossRef]
- Danylov, A.B.; Ilchuk, H.A.; Petrus, R.Y. Effect of HRT ZnO Film on Optical Spectra of Transmission in CdS/CdTe Solar Elements. Acta Phys. Pol. A 2018, 133, 981–983. [Google Scholar] [CrossRef]
- Nykyruy, L.; Yaremiichuk, O.; Zapukhlyak, Z.; Yavorskyi, R.; Potera, P.; Malyarska, I.; Fedoryk, O. Optical Properties of CdS/CdTe Heterojunction Prepared by Physical Vapor Deposition Technique. Phys. Chem. Solid State 2018, 19, 209–216. [Google Scholar] [CrossRef]
- Kovalenko, M.; Bovgyra, O.; Dzikovskyi, V.; Bovhyra, R. A DFT Study for Adsorption of CO and H2 on Pt-doped ZnO Nanocluster. SN Appl. Sci. 2020, 2, 790. [Google Scholar] [CrossRef]
- Li, F.; Asadi, H. DFT Study of the Effect of Platinum on the H2 Gas Sensing Performance of ZnO Nanotube: Explaining the Experimental Observations. J. Mol. Liq. 2020, 309, 113139. [Google Scholar] [CrossRef]
- Kashuba, A.I.; Semkiv, I.V.; Andriyevsky, B.; Ilchuk, H.A.; Kashuba, N.Y. Ab initio Studies of the Gas Adsorption on the Surface CdSe1–xSx Ultra-Thin Films. Appl. Nanosci. 2023, 13, 6749–6759. [Google Scholar] [CrossRef]
- Hoffman, A.J.; Mills, G.; Yee, H.; Hoffmann, M.R. Q-sized Cadmium Sulfide: Synthesis, Characterization, and Efficiency of Photoinitiation of Polymerization of Several Vinylic Monomers. J. Phys. Chem. 1992, 96, 5546. [Google Scholar] [CrossRef]
- Kuwabata, S.; Nishida, K.; Tsuda, R.; Inoue, H.; Yoneyama, H. Photochemical Reduction of Carbon Dioxide to Methanol Using ZnS Microcrystallite as a Photocatalyst in the Presence of Methanol Dehydrogenase. J. Electrochem. Soc. 1994, 141, 1498. [Google Scholar] [CrossRef]
- Deodanes, O.; Molina, J.C.; Violantes, C.; Pleitez, D.; Cuadra, J.; Ponce, H.; Rudamas, C. White Light Emitting CdS Quantum Dot Devices Coated with Layers of Graphene Carbon Quantum Dots. MRS Adv. 2020, 5, 3337–3343. [Google Scholar] [CrossRef]
- Matxain, J.M.; Mercero, J.M.; Fowler, J.E.; Ugalde, J.M. Electronic Excitation Energies of ZniOi Clusters. J. Am. Chem. Soc. 2003, 125, 9494–9499. [Google Scholar] [CrossRef]
- Syrotyuk, S.V. Electronic Structure of ZnS Crystal Doped with One or Two Transition Metal Atoms (Cr, Fe). J. Nano-Electron. Phys. 2021, 13, 05027. [Google Scholar] [CrossRef] [PubMed]
- Bovgyra, O.; Kovalenko, M.; Bovhyra, R.; Dzikovskyi, V. Effect of In, Ga and Al Heavy Doping on Electronic Structure of ZnO: First Principle Calculation. J. Phys. Stud. 2019, 23, 4301. [Google Scholar] [CrossRef]
- Syrotyuk, S.V. Influence of Cationic Vacancies and Hydrostatic Pressure on Electronic and Magnetic Properties of Doped ZnTe:Mn Crystal. Acta Phys. Pol. A 2022, 141, 333–337. [Google Scholar] [CrossRef]
- Al-Rawi, B.K.; Hameed, S.M.; Alsaadi, M.A.M. Simulation of Electronic Structure and some Properties of CdTe Crystals Using DFT. Mater. Sci. Forum. 2021, 1021, 1–10. [Google Scholar] [CrossRef]
- Kashuba, A.I.; Ilchuk, H.A.; Petrus, R.Y.; Andriyevsky, B.; Semkiv, I.V.; Zmiyovska, E.O. Growth, Crystal Structure and Theoretical Studies of Energy and Optical Properties of CdTe1−xSex Thin Films. Appl. Nanosci. 2022, 12, 335–342. [Google Scholar] [CrossRef]
- Ipsita, J.; Udai, P.S. Effect of Cadmium Chloride Treatment on CdS Buffer Layer and Its Impact on Growth of CdTe Layer: An Experimental and Numerical Studies. Phys. B Condens. Matter 2024, 678, 415746. [Google Scholar] [CrossRef]
- Turko, B.; Mostovoy, U.; Kovalenko, M.; Eliyashevskyi, Y.; Kulyk, Y.; Bovgyra, O.; Dzikovskyi, V.; Kostruba, A.; Vlokh, R.; Savaryn, V.; et al. Effect of Dopant Concentration and Crystalline Structure on the Absorption Edge in ZnO:Y Films. Ukr. J. Phys. Opt. 2021, 22, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Petrus, R.; Ilchuk, H.; Kashuba, A.; Semkiv, I.; Zmiiovska, E. Optical Properties of CdTe Thin Films Obtained by the Method of High-Frequency Magnetron Sputtering. Funct. Mater. 2020, 27, 342–347. [Google Scholar] [CrossRef]
- Rajbanshi, B.; Sarkar, S.; Sarkar, P. Band Gap Engineering of Graphene–CdTe Quantum Dot Hybrid Nanostructures. J. Mater. Chem. C 2014, 2, 8967–8975. [Google Scholar] [CrossRef]
- Gaponik, N.; Rogach, A.L. Thiol-capped CdTe Nanocrystals: Progress and Perspectives of the Related Research Fields. Phys. Chem. Chem. Phys. 2010, 12, 8685–8693. [Google Scholar] [CrossRef]
- Coe, S.; Woo, W.K.; Bawendi, M.G.; Bulovi’c, V. Electroluminescence from Single Monolayers of Nanocrystals in Molecular Organic Devices. Nature 2002, 420, 800–803. [Google Scholar] [CrossRef] [PubMed]
- Chin, P.T.K.; Stouwdam, J.W.; van Bavel, S.S.; Janssen, R.A.J. Cluster synthesis of branched CdTe nanocrystals for use in light-emitting diodes. Nanotechnology 2008, 19, 205602. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Wang, Y.A.; Li, L.S.; Wang, D.; Zhu, T.; Xu, J.; Yang, C.; Li, Y. Bright, Multicoloured Light-Emitting Diodes Based on Quantum Dots. Nat. Photon. 2007, 1, 717–722. [Google Scholar] [CrossRef]
- Dzhagan, V.; Kapush, O.; Isaeva, O.; Budzulyak, S.; Magda, O.; Kogutyuk, P.; Trishchuk, L.; Yefanov, V.; Valakh, M.; Yukhymchuk, V. Tuning the Photoluminescence of CdTe Quantum Dots by Controllable Coupling to Plasmonic Au Nanoparticles. Phys. Chem. Solid State 2022, 23, 720–727. [Google Scholar] [CrossRef]
- Riley, E.A.; Hess, C.M.; Reid, P.J. Photoluminescence Intermittency from Single Quantum Dots to Organic Molecules: Emerging Themes. Int. J. Mol. Sci. 2012, 13, 12487–12518. [Google Scholar] [CrossRef] [PubMed]
- Tynkevych, O.O.; Ranoszek-Soliwoda, K.; Grobelny, J.; Selyshchev, O.V.; Khalavka, Y.B. Spectroscopic and Electrochemical Monitoring of Band Structure Changes During the Alloying of CdTe QDs by Hg2+ Ions. Mater. Res. Express 2016, 3, 105046. [Google Scholar] [CrossRef]
- Akbari, M.; Rahimi-Nasrabadi, M.; Pourmasud, S.; Eghbali-Arani, M.; Reza Banafshe, H.; Ahmadi, F.; Reza Ganjali, M.; Sobhani nasab, A. CdTe Quantum Dots Prepared Using Herbal Species and Microorganisms and Their Anti-Cancer, Drug Delivery and Antibacterial Applications; A Review. Ceram. Int. 2020, 46, 9979–9989. [Google Scholar] [CrossRef]
- Nicholson, A.P.; Munshi, A.H.; Pozzoni, U.; Sampath, W.S. First Principles Approach to CdTe/Te Interface Band Alignment Using Density Functional Theory and Nonequilibrium Green’s Function. In Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, Waikoloa, HI, USA, 10–15 June 2018; pp. 1932–1936. [Google Scholar] [CrossRef]
- Mastai, Y.; Hodes, G. Size Quantization in Electrodeposited CdTe Nanocrystalline Films. J. Phys. Chem. B 1997, 101, 2685–2690. [Google Scholar] [CrossRef]
- Masumoto, Y.; Sonobe, K. Size-Dependent Energy Levels of CdTe Quantum Dots. Phys. Rev. B 1997, 56, 9734–9737. [Google Scholar] [CrossRef]
- Gharibshahi, E. Simulation, Synthesis and Optical Properties of Cadmium Telluride (CdTe) Semiconductor Nanoparticles. Solid State Commun. 2020, 320, 114009. [Google Scholar] [CrossRef]
- Rajbanshi, B.; Sarkar, P. Optimizing the Photovoltaic Properties of CdTe Quantum Dot–Porphyrin Nanocomposites: A Theoretical Study. J. Phys. Chem. C 2016, 120, 17878–17886. [Google Scholar] [CrossRef]
- Al-Douri, Y.; Baaziz, H.; Charifi, Z.; Khenata, R.; Hashim, U.; Al-Jassim, M. Further Optical Properties of CdX (X = S, Te) Compounds Under Quantum Dot Diameter Effect: Ab initio Method. Renew. Energy 2012, 45, 232–236. [Google Scholar] [CrossRef]
- Li, J.; Wang, L.-W. Band-Structure-Corrected Local Density Approximation Study of Semiconductor Quantum Dots and Wires. Phys. Rev. B 2005, 72, 125325. [Google Scholar] [CrossRef]
- Bhattacharya, S.K.; Kshirsagar, A. First Principle Study of Free and Surface Terminated CdTe Nanoparticles. Eur. Phys. J. D 2008, 48, 355–364. [Google Scholar] [CrossRef]
- Baskoutas, S.; Terzis, A.F. Size-Dependent Band Gap of Colloidal Quantum Dots. J. Appl. Phys. 2006, 99, 013708. [Google Scholar] [CrossRef]
- Haram, S.K.; Kshirsagar, A.; Gujarathi, Y.D.; Ingole, P.P.; Nene, O.A.; Markad, G.B.; Nanavati, S.P. Quantum Confinement in CdTe Quantum Dots: Investigation through Cyclic Voltammetry Supported by Density Functional Theory (DFT). J. Phys. Chem. C 2011, 115, 6243–6249. [Google Scholar] [CrossRef]
- Kuznetsov, A.E.; Beratan, D.N. Structural and Electronic Properties of Bare and Capped Cd33Se33 and Cd33Te33 Quantum Dots. J. Phys. Chem. C 2014, 118, 7094–7109. [Google Scholar] [CrossRef]
- Boehme, S.C.; Azpiroz, J.M.; Aulin, Y.V.; Grozema, F.C.; Vanmaekelbergh, D.; Siebbeles, L.D.A.; Infante, I.; Houtepen, A.J. Density of Trap States and Auger-mediated Electron Trapping in CdTe Quantum-Dot Solids. Nano Lett. 2015, 15, 3056–3066. [Google Scholar] [CrossRef]
- Bhattacharya, S.K.; Kshirsagar, A. Ab initio Calculations of Structural and Electronic Properties of CdTe Clusters. Phys. Rev. B 2007, 75, 035402. [Google Scholar] [CrossRef]
- Kupchak, I.; Korbutyak, D. Spectral Characteristics of Passivated CdTe Quantum Dots with Coordinate-Dependent Parameters. Ukr. J. Phys. 2023, 68, 38–46. [Google Scholar] [CrossRef]
- Sriram, S.; Chandiramouli, R. DFT Studies on the Stability of Linear, Ring, and 3D Structures in CdTe Nanoclusters. Res. Chem. Intermed. 2015, 41, 2095. [Google Scholar] [CrossRef]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 2017, 29, 465901. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Chen, G.; Zhu, Y.; Yin, W.-J.; Yan, Y.; Al-Jassim, M.; Pennycook, S.J. LDA+U/GGA+U Calculations of Structural and Electronic Properties of CdTe: Dependence on the Effective U Parameter. Comput. Mater. Sci. 2015, 98, 18–23. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. A 1965, 140, A1133. [Google Scholar] [CrossRef]
- Zhan, C.-G.; Nichols, J.A.; Dixon, D.A. Ionization Potential, Electron Affinity, Electronegativity, Hardness, and Electron Excitation Energy: Molecular Properties from Density Functional Theory Orbital Energies. J. Phys. Chem. A 2003, 107, 418–4195. [Google Scholar] [CrossRef]
- Bandyopadhyay, D. Chemisorptions Effect of Oxygen on the Geometries, Electronic and Magnetic Properties of Small Size Nin (n = 1–6) Clusters. J. Mol. Model. 2012, 18, 737–749. [Google Scholar] [CrossRef] [PubMed]
- John Xavier, R.; Gobinath, E. Experimental and Theoretical Spectroscopic Studies, HOMO–LUMO, NBO and NLMO Analysis of 3,5-Dibromo-2,6-Dimethoxy Pyridine. Spectrochim. Acta Part A 2012, 97, 215–222. [Google Scholar] [CrossRef]
- Arivazhagan, M.; Jeyavijayan, S. Vibrational Spectroscopic, First-Order Hyperpolarizability and HOMO, LUMO Studies of 1,2-Dichloro-4-Nitrobenzene Based on Hartree–Fock and DFT Calculations. Spectrochim. Acta Part A 2011, 79, 376–383. [Google Scholar] [CrossRef]
n | laver | lmax | lmin | Eb | HOMO–LUMO Gap | χ |
---|---|---|---|---|---|---|
1 | 2.668 | 2.668 | 2.668 | 1.509 | 0.969 | 4.567 |
2 | 2.738 | 2.767 | 2.685 | 2.432 | 0.505 | 4.678 |
3 | 2.741 | 2.776 | 2.694 | 2.806 | 0.463 | 4.684 |
4 | 2.738 | 2.777 | 2.692 | 2.999 | 0.458 | 4.681 |
5 | 2.738 | 2.773 | 2.692 | 3.116 | 0.459 | 4.678 |
6 | 2.740 | 2.777 | 2.691 | 3.197 | 0.460 | 4.674 |
7 | 2.737 | 2.780 | 2.693 | 3.246 | 0.451 | 4.682 |
8 | 2.738 | 2.780 | 2.693 | 3.286 | 0.450 | 4.672 |
9 | 2.736 | 2.778 | 2.693 | 3.321 | 0.450 | 4.671 |
10 | 2.737 | 2.780 | 2.692 | 3.346 | 0.452 | 4.666 |
n | HOMO–LUMO Gap | Eb |
---|---|---|
1 | 0.969, 1.06 [42], 0.4 [40], 0.4 [35] | 1.509, 0.802 [42], 0.75 [35] |
2 | 0.505, 0.49 [42] | 2.432, 1.04 [42] |
3 | 0.463, 0.33 [42] | 2.806, 1.183 [42] |
4 | 0.458, 0.25 [42] | 2.999, 1.251 [42] |
5 | 0.459, 0.19 [42] | 3.116, 1.289 [42] |
6 | 0.460, 0.15 [42] | 3.197, 1.312 [42] |
7 | 0.451, 0.08 [42] | 3.246, 1.325 [42] |
8 | 0.450 | 3.286 |
9 | 0.450 | 3.321 |
10 | 0.452 | 3.346 |
n | l | α | β | ε |
---|---|---|---|---|
2 | 2.8180 | 65.554 | 114.446 | 90.000 |
3 | 2.7530 | 81.447 | 158.553 | 120.000 |
4 | 2.7370 | 86.450 | 185.693 | 136.072 |
5 | 2.7310 | 90.005 | 192.993 | 141.499 |
6 | 2.7285 | 98.618 | 201.382 | 150.000 |
7 | 2.7280 | 102.104 | 206.468 | 154.286 |
8 | 2.7250 | 105.982 | 209.026 | 157.504 |
9 | 2.7350 | 107.506 | 212.493 | 160.000 |
10 | 2.7300 | 108.884 | 215.116 | 162.000 |
n | Eb | HOMO–LUMO Gap | χ |
---|---|---|---|
2 | 2.881 | 1.798 | 4.2010 |
3 | 3.464 | 2.611 | 4.0285 |
4 | 3.532 | 2.743 | 3.9135 |
5 | 3.561 | 2.839 | 3.8395 |
6 | 3.527 | 2.797 | 3.8045 |
7 | 3.491 | 2.781 | 3.8275 |
8 | 3.442 | 2.609 | 3.8815 |
9 | 3.419 | 2.555 | 3.9135 |
10 | 3.406 | 2.599 | 3.8805 |
n | HOMO–LUMO Gap | Eb |
---|---|---|
2 | 1.798, 0.55 [30], 1.2 [35], 1.2 [40] | 2.881, 1.204 [42], 1.6 [35], 3.1 [40] |
3 | 2.611, 1.35 [42], 2.3 [35], 2.2 [40] | 3.464, 1.605 [42], 1.95 [35], 3.75 [40] |
4 | 2.743, 0.74 [42], 2.35 [35], 2.2 [40] | 3.532, 1.462 [42], 2 [35], 3.9 [40] |
5 | 2.839, 1.06 [42], 2.5 [35], 2.3 [40] | 3.561, 1.600 [42], 1.95 [35], 3.8 [40] |
6 | 2.797, 0.58 [42] | 3.527, 1.106 [42] |
7 | 2.781, 0.52 [42] | 3.491, 1.44 [42] |
8 | 2.609 | 3.442 |
9 | 2.555 | 3.419 |
10 | 2.599 | 3.406 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kashuba, A.; Semkiv, I.; Rudysh, M.; Ilchuk, H.; Shchepanskyi, P. Ring and Linear Structures of CdTe Clusters. Quantum Rep. 2024, 6, 349-358. https://doi.org/10.3390/quantum6030022
Kashuba A, Semkiv I, Rudysh M, Ilchuk H, Shchepanskyi P. Ring and Linear Structures of CdTe Clusters. Quantum Reports. 2024; 6(3):349-358. https://doi.org/10.3390/quantum6030022
Chicago/Turabian StyleKashuba, Andrii, Ihor Semkiv, Myron Rudysh, Hryhorii Ilchuk, and Pavlo Shchepanskyi. 2024. "Ring and Linear Structures of CdTe Clusters" Quantum Reports 6, no. 3: 349-358. https://doi.org/10.3390/quantum6030022
APA StyleKashuba, A., Semkiv, I., Rudysh, M., Ilchuk, H., & Shchepanskyi, P. (2024). Ring and Linear Structures of CdTe Clusters. Quantum Reports, 6(3), 349-358. https://doi.org/10.3390/quantum6030022