Eliminating the Second-Order Time Dependence from the Time Dependent Schrödinger Equation Using Recursive Fourier Transforms
Abstract
:1. Introduction
2. Methods
2.1. Formulating the First-Order Time Dependent Schrödinger Equation through Recursive Fourier Transforms (RFT)
2.1.1. Example: Gaussian-Kicked Harmonic Oscillator
2.1.2. Example: Fermi’s Golden Rule
2.2. Decoupling the Second-Order TDSE through RFT
- Step 1. Apply the convolution theorem to the nested integral
- Step 2. Discretize the integral over as a Riemann sum and move it inside the sum over k and i
- Step 3. Allow the variation over time to vary the width of the distribution
- Step 4. Apply the convolution theorem to the outer integral
2.2.1. Example: Second-Order Harmonic Perturbation Golden Rule
3. Discussion
3.1. Bosonic Sampling and Quantum Computation
3.2. Quantum Field Theory
3.3. Bardeen Tunneling
Example: 2nd Order Bardeen Tunneling
3.4. Joint Spectral Amplitude Function
3.5. Quantum Zeno Dynamics
3.6. Solitons and Non-Linear Cases
3.7. Master Equations
3.8. Other Applications
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RFT | Recursive Fourier transform |
TDSE | time-dependent Schrödinger equation |
Appendix A. Definitions of the Fourier Transform
Appendix B. Using the Appropriate Dual Domain
Appendix C. Detailed Analysis
Appendix C.1. Evaluating the Transfer Function
Appendix C.2. Stepping through the Algorithm for Transfer Function
Appendix C.3. Domain and Resolution of Transfer Function
Appendix C.4. Effect of Time Window Shift on the Form of the Transfer Function
Appendix C.5. Normalizability of the Transfer Function
Appendix D. Accuracy of Method
Appendix D.1. Comparing First-Order to Second-Order Convolution
Appendix D.2. Frequency Profile versus Potential Strength
Appendix D.3. Frequency Profile versus Range of Intermediate States
Appendix E. Interpretation
Appendix E.1. Kicked Frequency and Natural Frequency for Harmonic Oscillator
Appendix E.2. Frequency Sampling Interpretation
References
- Schrödinger, E. Quantisierung als Eigenwertproblem (Vierte Mitteilung). Ann. Phys. 1926, 386, 109–139. [Google Scholar] [CrossRef]
- Dirac, P.A.M. The Principles of Quantum Mechanics; Clarendon Press: Oxford, UK, 1930. [Google Scholar]
- Dyson, F.J. Divergence of Perturbation Theory in Quantum Electrodynamics. Phys. Rev. 1952, 85, 631–632. [Google Scholar] [CrossRef]
- Schwartz, M.D. Quantum Field Theory and the Standard Model; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Walker, J.S.; Gathright, J. Exploring one-dimensional quantum mechanics with transfer matrices. Am. J. Phys. 1994, 62, 408–422. [Google Scholar] [CrossRef]
- Feynman, R.P. Space-Time Approach to Non-Relativistic Quantum Mechanics. Rev. Mod. Phys. 1948, 20, 367–387. [Google Scholar] [CrossRef]
- Feynman, R.P. A Relativistic Cut-off for Classical Electrodynamics. Phys. Rev. 1948, 74, 939–946. [Google Scholar] [CrossRef]
- Feynman, R.P. Relativistic Cut-Off for Quantum Electrodynamics. Phys. Rev. 1948, 74, 1430–1438. [Google Scholar] [CrossRef]
- Schroeter, D.J.G.D.F. Introduction to Quantum Mechanics, 3rd ed.; University Cambridge Press: Cambridge, UK, 2018. [Google Scholar]
- Paganin, D.M.; Pelliccia, D. X-ray phase-contrast imaging: A broad overview of some fundamentals. Adv. Imaging Electron Phys. 2021, 218, 63–158. [Google Scholar]
- Strang, G. On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 1968, 5, 506–517. [Google Scholar] [CrossRef]
- Kosloff, D.; Kosloff, R. A Fourier Method Solution for the Time Dependent Schrödinger Equation as a Tool in Molecular Dynamics. J. Comput. Phys. 1983, 52, 35–53. [Google Scholar] [CrossRef]
- Dateo, C.E.; Engel, V.; Almeida, R.; Horia, M. Numerical solutions of the time-dependent Schrödinger equation in spherical coordinates by Fourier transform methods. Comput. Phys. Commun. 1991, 63, 435–445. [Google Scholar] [CrossRef]
- Van Dyck, D. Image Calculations in High-Resolution Electron Microscopy: Problems. Progress. and Prospects. Adv. Electron. Electron. Phys. 1985, 65, 295–355. [Google Scholar]
- Taha, T.R.; Ablowitz, M.I. Analytical and Numerical Aspects of Certain Nonlinear Evolution Equations. II. Numerical, Nonlinear Schrödinger Equation. J. Comput. Phys. 1984, 55, 203–230. [Google Scholar] [CrossRef]
- Bandrauk, A.D.; Shen, H. Higher order exponential split operator method for solving time-dependent Schrodinger equations. Can. J. Chem 1992, 70, 555–559. [Google Scholar] [CrossRef]
- Hansson, T.; Wabnitz, S. Dynamics of microresonator frequency comb generation: Models and stability. Nanophotonics 2016, 5, 231–243. [Google Scholar] [CrossRef]
- Nelson-Isaacs, S.E. Spacetime Paths as a Whole. Quantum Rep. 2021, 3, 13–41. [Google Scholar] [CrossRef]
- Hong, C.K.; Ou, Z.Y.; Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 1987, 59, 2044–2046. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.O.C.; Thiel, V.; Karpiński, M.; Smith, B.J. Measuring the Single-Photon Temporal-Spectral Wave Function. Phys. Rev. Lett. 2018, 121, 083602. [Google Scholar] [CrossRef] [PubMed]
- Mosley, P.J.; Lundeen, J.S.; Smith, B.J.; Wasylczyk, P.; U’Ren, A.B.; Silberhorn, C.; Walmsley, I.A. Heralded Generation of Ultrafast Single Photons in Pure Quantum States. Phys. Rev. Lett. 2008, 100, 133601. [Google Scholar] [CrossRef] [PubMed]
- Müller, P.; Tentrup, T.; Bienert, M.; Morigi, G.; Eschner, J. Spectral properties of single photons from quantum emitters. Phys. Rev. A 2017, 96, 023861. [Google Scholar] [CrossRef]
- Tamma, V.; Laibacher, S. Multiboson Correlation Interferometry with Arbitrary Single-Photon Pure States. Phys. Rev. Lett. 2015, 114, 243601. [Google Scholar] [CrossRef]
- Laibacher, S.; Tamma, V. Symmetries and entanglement features of inner-mode-resolved correlations of interfering nonidentical photons. Phys. Rev. A 2018, 98, 053829. [Google Scholar] [CrossRef]
- Tamma, V.; Laibacher, S. Boson sampling with random numbers of photons. Phys. Rev. A 2021, 104, 032204. [Google Scholar] [CrossRef]
- Tamma, V.; Laibacher, S. Scattershot multiboson correlation sampling with random photonic inner-mode multiplexing. Eur. Phys. J. Plus 2023, 138, 335. [Google Scholar] [CrossRef]
- Wang, X.J.; Jing, B.; Sun, P.F.; Yang, C.W.; Yu, Y.; Tamma, V.; Bao, X.H.; Pan, J.W. Experimental Time-Resolved Interference with Multiple Photons of Different Colors. Phys. Rev. Lett. 2018, 121, 080501. [Google Scholar] [CrossRef]
- Triggiani, D.; Psaroudis, G.; Tamma, V. Ultimate Quantum Sensitivity in the Estimation of the Delay between two Interfering Photons through Frequency-Resolving Sampling. Phys. Rev. Appl. 2023, 19, 044068. [Google Scholar] [CrossRef]
- Cui, L.; Li, X.; Zhao, N. Minimizing the frequency correlation of photon pairs in photonic crystal fibers. New J. Phys. 2012, 14, 123001. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, L.; Hirschman, J.; Shariatdoust, M.S.; Belli, F.; Carbajo, S. Optimizing Spectral Phase Transfer in Four-Wave Mixing with Gas-filled Capillaries: A Trade-off Study. arXiv 2024, arXiv:2404.16993. [Google Scholar]
- Asavanant, W.; Furusawa, A. Multipartite continuous-variable optical quantum entanglement: Generation and application. Phys. Rev. A 2024, 109, 040101. [Google Scholar] [CrossRef]
- Bartolucci, S.; Birchall, P.; Bombín, H.; Cable, H.; Dawson, C.; Gimeno-Segovia, M.; Johnston, E.; Kieling, K.; Nickerson, N.; Pant, M.; et al. Fusion-based quantum computation. Nat. Commun. 2023, 14, 912. [Google Scholar] [CrossRef]
- Lu, W.; Krasavin, A.V.; Lan, S.; Zayats, A.V.; Dai, Q. Gradient-induced long-range optical pulling force based on photonic band gap. Light Sci. Appl. 2024, 13, 93. [Google Scholar] [CrossRef]
- Neuman, K.C.; Block, S.M. Optical trapping. Rev. Sci. Instrum. 2004, 75, 2787–2809. [Google Scholar] [CrossRef] [PubMed]
- Pérez-García, L.; Selin, M.; Ciarlo, A.; Magazzù, A.; Pesce, G.; Sasso, A.; Volpe, G.; Pérez Castillo, I.; Arzola, A.V. Optimal calibration of optical tweezers with arbitrary integration time and sampling frequencies: A general framework [Invited]. Biomed. Opt. Express 2023, 14, 6442–6469. [Google Scholar] [CrossRef] [PubMed]
- Panda, D.K.; Benjamin, C. Quantum cryptographic protocols with dual messaging system via 2D alternate quantum walks and genuine single particle entangled states. arXiv 2024, arXiv:2405.00663. [Google Scholar]
- Lounis, S. Theory of Scanning Tunneling Microscopy. arXiv 2014, arXiv:1404.0961. [Google Scholar]
- Gottlieb, A.D.; Wesoloski, L. Bardeen’s Tunneling Theory as Applied to Scanning Tunneling Microscopy: A Technical Guide to the Traditional Interpretation. Nanotechnology 2006, 17, R57. [Google Scholar] [CrossRef]
- Grewal, A.; Leon, C.C.; Kuhnke, K.; Kern, K.; Gunnarsson, O. Scanning Tunneling Microscopy for Molecules: Effects of Electron Propagation into Vacuum. ACS Nano 2024, 18, 12158–12167. [Google Scholar] [CrossRef] [PubMed]
- Dessai, M.; Kulkarni, A.V. Calculation of tunneling current across trapezoidal potential barrier in a scanning tunneling microscope. J. Appl. Phys. 2022, 132, 244901. [Google Scholar] [CrossRef]
- Gaida, J.H.; Lourenço-Martins, H.; Sivis, M.; Rittmann, T.; Feist, A.; de Abajo, F.J.G.; Ropers, C. Attosecond electron microscopy by free-electron homodyne detection. Nat. Photonics 2024, 18, 509–515. [Google Scholar] [CrossRef]
- Cao, A.; Eckner, W.J.; Yelin, T.L.; Young, A.W.; Jandura, S.; Yan, L.; Kim, K.; Pupillo, G.; Ye, J.; Oppong, N.D.; et al. Multi-qubit gates and ‘Schrödinger cat’ states in an optical clock. arXiv 2024, arXiv:2402.16289. [Google Scholar]
- Kawasaki, A. Real-time observation of picosecond-timescale optical quantum entanglement toward ultrafast quantum information processing. arXiv 2024, arXiv:2403.07357. [Google Scholar]
- Kawasaki, A. High-rate Generation and State Tomography of Non–Gaussian Quantum States for Ultra-fast Clock Frequency Quantum Processors. arXiv 2024, arXiv:2402.17408. [Google Scholar]
- Nishidome, H.; Omoto, M.; Nagai, K.; Uchida, K.; Murakami, Y.; Eda, J.; Okubo, H.; Ueji, K.; Yomogida, Y.; Kono, J.; et al. Influence of Laser Intensity and Location of the Fermi Level on Tunneling Processes for High-Harmonic Generation in Arrayed Semiconducting Carbon Nanotubes. ACS Photonics 2024, 11, 171–179. [Google Scholar] [CrossRef]
- Majidi, S.; Aghbolaghi, R.; Navid, H.A.; Mokhlesi, R. Optimization of cut-off frequency in high harmonic generation in noble gas. Appl. Phys. B 2023, 130, 11. [Google Scholar] [CrossRef]
- Farkas, G.; Tóth, C. Proposal for attosecond light pulse generation using laser-induced multiple harmonic conversion processes in rare gases. Phys. Lett. A 1992, 168, 447–450. [Google Scholar] [CrossRef]
- Lewenstein, M.; Balcou, P.; Ivanov, M.Y.; L’Huillier, A.; Corkum, P.B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 1994, 49, 2117–2132. [Google Scholar] [CrossRef]
- Ryabikin, M.Y.; Emelin, M.Y.; Strelkov, V.V. Attosecond electromagnetic pulses: Generation, measurement, and application. Attosecond metrology and spectroscopy. Phys. Usp. 2023, 66, 360–380. [Google Scholar] [CrossRef]
- Hänsch, T. A proposed sub-femtosecond pulse synthesizer using separate phase-locked laser oscillators. Opt. Commun. 1990, 80, 71–75. [Google Scholar] [CrossRef]
- Abele, H.; Jenke, T.; Leeb, H.; Schmiedmayer, J. Ramsey’s method of separated oscillating fields and its application to gravitationally induced quantum phase shifts. Phys. Rev. D 2010, 81, 065019. [Google Scholar] [CrossRef]
- Jenke, T.; Geltenbort, P.; Lemmel, H.; Abele, H. Realization of a gravity-resonance-spectroscopy technique. Nat. Phys. 2011, 7, 468–472. [Google Scholar] [CrossRef]
- Villegas-Martínez, B.M.; Soto-Eguibar, F.; Moya-Cessa, H.M. Application of Perturbation Theory to a Master Equation. Adv. Math. Phys. 2016, 2016, 9265039. [Google Scholar] [CrossRef]
- Krijtenburg-Lewerissa, K.; Pol, H.J.; Brinkman, A.; van Joolingen, W.R. Insights into teaching quantum mechanics in secondary and lower undergraduate education. Phys. Rev. Phys. Educ. Res. 2017, 13, 010109. [Google Scholar] [CrossRef]
- Singh, C.; Belloni, M.; Christian, W. Improving students’ understanding of quantum mechanics. Phys. Today 2006, 59, 43–49. [Google Scholar] [CrossRef]
- Nodurft, I.C.; Shaw, H.C.; Glasser, R.T.; Kirby, B.T.; Searles, T.A. Generation of polarization entanglement via the quantum Zeno effect. Opt. Express 2022, 30, 31971–31985. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, J.J.; Napolitano, J. Modern Quantum Mechanics, 2nd ed.; Pearson Education Inc.: London, UK, 2011. [Google Scholar]
- Tokmakoff, A. Time-Dependent Quantum Mechanics and Spectroscopy. University of Chicago. 2014. Available online: https://tdqms.uchicago.edu/full-tdqms-notes-upload-december-2014/ (accessed on 23 May 2024).
- Zhang, J.M.; Liu, Y. Fermi’s golden rule: Its derivation and breakdown by an ideal model. Eur. J. Phys. 2016, 37, 065406. [Google Scholar] [CrossRef]
- Baym, G. Lectures on Quantum Mechanics, 1st ed.; CRC Press: Boca Raton, FL, USA, 1969. [Google Scholar] [CrossRef]
- Fowler, M. Time-Dependent Perturbation Theory. 2007. Available online: https://galileo.phys.virginia.edu/classes/752.mf1i.spring03/Time_Dep_PT.pdf (accessed on 26 December 2023).
- Tamma, V.; Laibacher, S. Boson sampling with non-identical single photons. J. Mod. Opt. 2016, 63, 41–45. [Google Scholar] [CrossRef]
- Li, X.; Ma, X.; Ou, Z.Y.; Yang, L.; Cui, L.; Yu, D. Spectral study of photon pairs generated in dispersion shifted fiber with a pulsed pump. Opt. Express 2008, 16, 32–44. [Google Scholar] [CrossRef]
- Chen, J.; Li, X.; Kumar, P. Two-photon-state generation via four-wave mixing in optical fibers. Phys. Rev. A 2005, 72, 033801. [Google Scholar] [CrossRef]
- Sharping, J.E.; Chen, J.; Li, X.; Kumar, P.; Windeler, R.S. Quantum-correlated twin photons from microstructure fiber. Opt. Express 2004, 12, 3086–3094. [Google Scholar] [CrossRef] [PubMed]
- Garay-Palmett, K.; McGuinness, H.J.; Cohen, O.; Lundeen, J.S.; Rangel-Rojo, R.; U’Ren, A.B.; Raymer, M.G.; McKinstrie, C.J.; Radic, S.; Walmsley, I.A. Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber. Opt. Express 2007, 15, 14870–14886. [Google Scholar] [CrossRef]
- Keller, T.E.; Rubin, M.H. Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse. Phys. Rev. A 1997, 56, 1534–1541. [Google Scholar] [CrossRef]
- Rubin, M.H.; Klyshko, D.N.; Shih, Y.H.; Sergienko, A.V. Theory of two-photon entanglement in type-II optical parametric down-conversion. Phys. Rev. A 1994, 50, 5122–5133. [Google Scholar] [CrossRef] [PubMed]
- Erez, N.; Aharonov, Y.; Reznik, B.; Vaidman, L. Correcting quantum errors with the Zeno effect. Phys. Rev. A 2004, 69, 062315. [Google Scholar] [CrossRef]
- Franson, J.D.; Jacobs, B.C.; Pittman, T.B. Quantum computing using single photons and the Zeno effect. Phys. Rev. A 2004, 70, 062302. [Google Scholar] [CrossRef]
- Bayındır, C.; Altintas, A.A.; Ozaydin, F. Self-localized solitons of a q-deformed quantum system. Commun. Nonlinear Sci. Numer. Simul. 2021, 92, 105474. [Google Scholar] [CrossRef]
- Engel, U.M. On Quantum Chaos, Stochastic Webs and Localization in a Quantum Mechanical Kick System; Logos Verlag: Berlin, Germany, 2007. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nelson-Isaacs, S. Eliminating the Second-Order Time Dependence from the Time Dependent Schrödinger Equation Using Recursive Fourier Transforms. Quantum Rep. 2024, 6, 323-348. https://doi.org/10.3390/quantum6030021
Nelson-Isaacs S. Eliminating the Second-Order Time Dependence from the Time Dependent Schrödinger Equation Using Recursive Fourier Transforms. Quantum Reports. 2024; 6(3):323-348. https://doi.org/10.3390/quantum6030021
Chicago/Turabian StyleNelson-Isaacs, Sky. 2024. "Eliminating the Second-Order Time Dependence from the Time Dependent Schrödinger Equation Using Recursive Fourier Transforms" Quantum Reports 6, no. 3: 323-348. https://doi.org/10.3390/quantum6030021
APA StyleNelson-Isaacs, S. (2024). Eliminating the Second-Order Time Dependence from the Time Dependent Schrödinger Equation Using Recursive Fourier Transforms. Quantum Reports, 6(3), 323-348. https://doi.org/10.3390/quantum6030021