The Advantages of Combining Morphological and Molecular Methods to Characterise Zooplankton Communities: A Case Study of the UNESCO Biosphere Reserve of the Berlengas Archipelago, Portugal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Methodology
2.2. Morphological Identification of Zooplankton Community
2.3. DNA Extraction from Zooplankton Communities (CeDNA)
2.4. Environmental DNA Extraction from Water Samples (eDNA)
2.5. Metabarcoding Procedure
2.6. Bioinformatic Analysis of Metabarcoding Data
2.7. Statistical Analysis
2.8. Non-Indigenous Species (NIS) Detection
3. Results
3.1. Zooplankton Species Identification
3.2. Alpha- and Beta-Diversity
3.3. Non-Indigenous Species (NIS) Detection
4. Discussion
4.1. Databases’ Influence and Complementarity Between COI and 18S rRNA
4.2. Complementarity Between DNA Sources and Optimisation of the eDNA Approach
4.3. Benefits of Combining Classical and Molecular Approaches
4.4. Detection of Non-Indigenous Species Through Metabarcoding Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lampert, W. Zooplankton research: The contribution of limnology to general ecological paradigms. Aquat. Ecol. 1997, 31, 19–27. [Google Scholar] [CrossRef]
- Stemmann, L.; Boss, E. Plankton and Particle Size and Packaging: From Determining Optical Properties to Driving the Biological Pump. Annu. Rev. Mar. Sci. 2012, 4, 263–290. [Google Scholar] [CrossRef] [PubMed]
- Daewel, U.; Hjollo, S.S.; Huret, M.; Ji, R.B.; Maar, M.; Niiranen, S.; Travers-Trolet, M.; Peck, M.A.; van de Wolfshaar, K.E. Predation control of zooplankton dynamics: A review of observations and models. ICES J. Mar. Sci. 2014, 71, 254–271. [Google Scholar] [CrossRef]
- Jeong, H.J.; Kim, J.S.; Lee, K.H.; Seong, K.A.; Du Yoo, Y.; Kang, N.S.; Kim, T.H.; Song, J.Y.; Kwon, J.E. Differential interactions between the nematocyst-bearing mixotrophic dinoflagellate Paragymnodinium shiwhaense and common heterotrophic protists and copepods: Killer or prey. Harmful Algae 2017, 62, 37–51. [Google Scholar] [CrossRef]
- Morabito, G.; Mazzocchi, M.G.; Salmaso, N.; Zingone, A.; Bergami, C.; Flaim, G.; Accoroni, S.; Basset, A.; Bastianini, M.; Belmonte, G.; et al. Plankton dynamics across the freshwater, transitional and marine research sites of the LTER-Italy Network. Patterns, fluctuations, drivers. Sci. Total Environ. 2018, 627, 373–387. [Google Scholar] [CrossRef]
- Schroeder, A.; Pallavicini, A.; Edomi, P.; Pansera, M.; Camatti, E. Suitability of a dual COI marker for marine zooplankton DNA metabarcoding. Mar. Environ. Res. 2021, 170, 105444. [Google Scholar] [CrossRef]
- Beaugrand, G. Monitoring pelagic ecosystems using plankton indicators. ICES J. Mar. Sci. 2005, 62, 333–338. [Google Scholar] [CrossRef]
- Beaugrand, G.; Edwards, M.; Legendre, L. Marine biodiversity, ecosystem functioning, and carbon cycles. Proc. Natl. Acad. Sci. USA 2010, 107, 10120–10124. [Google Scholar] [CrossRef]
- Hay, S. Marine ecology: Gelatinous bells may ring change in marine ecosystems. Curr. Biol. 2006, 16, R679–R682. [Google Scholar] [CrossRef]
- Polyakov, I.V.; Alkire, M.B.; Bluhm, B.A.; Brown, K.A.; Carmack, E.C.; Chierici, M.; Danielson, S.L.; Ellingsen, I.; Ershova, E.A.; Gardfeldt, K.; et al. Borealization of the Arctic Ocean in Response to Anomalous Advection from Sub-Arctic Seas. Front. Mar. Sci. 2020, 7, 491. [Google Scholar] [CrossRef]
- Weydmann, A.; Carstensen, J.; Goszczko, I.; Dmoch, K.; Olszewska, A.; Kwasniewski, S. Shift towards the dominance of boreal species in the Arctic: Inter-annual and spatial zooplankton variability in the West Spitsbergen Current. Mar. Ecol. Prog. Ser. 2014, 501, 41–52. [Google Scholar] [CrossRef]
- Weydmann, A.; Walczowski, W.; Carstensen, J.; Kwasniewski, S. Warming of Subarctic waters accelerates development of a key marine zooplankton Calanus finmarchicus. Glob. Chang. Biol. 2018, 24, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Bucklin, A.; Peijnenburg, K.; Kosobokova, K.N.; O’Brien, T.D.; Blanco-Bercial, L.; Cornils, A.; Falkenhaug, T.; Hopcroft, R.R.; Hosia, A.; Laakmann, S.; et al. Toward a global reference database of COI barcodes for marine zooplankton. Mar. Biol. 2021, 168, 1–26. [Google Scholar] [CrossRef]
- Gannon, J.E.; Stemberger, R.S. Zooplankton (Especially Crustaceans and Rotifers) As Indicators of Water-Quality. Trans. Am. Microsc. Soc. 1978, 97, 16–35. [Google Scholar] [CrossRef]
- Ferdous, Z.; Muktadir, A. A Review: Potentiality of Zooplankton as Bioindicator. Am. J. Appl. Sci. 2009, 6, 1815–1819. [Google Scholar] [CrossRef]
- Hering, D.; Borja, A.; Jones, J.I.; Pont, D.; Boets, P.; Bouchez, A.; Bruce, K.; Drakare, S.; Hanfling, B.; Kahlert, M.; et al. Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive. Water Res. 2018, 138, 192–205. [Google Scholar] [CrossRef]
- Ndah, A.B.; Meunier, C.L.; Kirstein, I.V.; Göbel, J.; Rönn, L.; Boersma, M. A systematic study of zooplankton-based indices of marine ecological change and water quality: Application to the European marine strategy framework Directive (MSFD). Ecol. Indic. 2022, 135, 108587. [Google Scholar] [CrossRef]
- Lenz, J. 1—Introduction. ICES Zooplankton Methodol. Man. 2000, 11, 215–226. [Google Scholar] [CrossRef]
- Wiebe, P.H.; Bucklin, A.; Madin, L.; Angel, M.V.; Sutton, T.; Pages, F.; Hopcroft, R.R.; Lindsay, D. Deep-sea sampling on CMarZ cruises in the Atlantic Ocean—An Introduction. Deep Sea Res. Part II Top. Stud. Oceanogr. 2010, 57, 2157–2166. [Google Scholar] [CrossRef]
- Bucklin, A.; Batta-Lona, P.G.; Questel, J.M.; Wiebe, P.H.; Richardson, D.E.; Copley, N.J.; O’Brien, T.D. COI Metabarcoding of Zooplankton Species Diversity for Time-Series Monitoring of the NW Atlantic Continental Shelf. Front. Mar. Sci. 2022, 9, 867893. [Google Scholar] [CrossRef]
- Matos, A.; Ledoux, J.-B.; Domínguez Pérez, D.; Almeida, D.; Antunes, A. Omics Advances in the Study of Zooplankton; CRC Press: Boca Raton, FL, USA, 2020; pp. 264–277. [Google Scholar] [CrossRef]
- Bucklin, A.; Ortman, B.D.; Jennings, R.M.; Nigro, L.M.; Sweetman, C.J.; Copley, N.J.; Sutton, T.; Wiebe, P.H. A “Rosetta Stone” for metazoan zooplankton: DNA barcode analysis of species diversity of the Sargasso Sea (Northwest Atlantic Ocean). Deep Sea Res. Part II Top. Stud. Oceanogr. 2010, 57, 2234–2247. [Google Scholar] [CrossRef]
- Djurhuus, A.; Pitz, K.; Sawaya, N.A.; Rojas-Marquez, J.; Michaud, B.; Montes, E.; Muller-Karger, F.; Breitbart, M. Evaluation of marine zooplankton community structure through environmental DNA metabarcoding. Limnol. Oceanogr. Methods 2018, 16, 209–221. [Google Scholar] [CrossRef]
- Bucklin, A.; Lindeque, P.K.; Rodriguez-Ezpeleta, N.; Albaina, A.; Lehtiniemi, M. Metabarcoding of marine zooplankton: Prospects, progress and pitfalls. J. Plankton Res. 2016, 38, 393–400. [Google Scholar] [CrossRef]
- Choquet, M.; Kosobokova, K.; Kwasniewski, S.; Hatlebakk, M.; Dhanasiri, A.K.S.; Melle, W.; Daase, M.; Svensen, C.; Soreide, J.E.; Hoarau, G. Can morphology reliably distinguish between the copepods Calanus finmarchicus and C-glacialis, or is DNA the only way? Limnol. Oceanogr. Methods 2018, 16, 237–252. [Google Scholar] [CrossRef]
- Knowlton, N. Molecular genetic analyses of species boundaries in the sea. Hydrobiologia 2000, 420, 73–90. [Google Scholar] [CrossRef]
- Lindsay, D.J.; Grossmann, M.M.; Bentlage, B.; Collins, A.G.; Minemizu, R.; Hopcroft, R.R.; Miyake, H.; Hidaka-Umetsu, M.; Nishikawa, J. The perils of online biogeographic databases: A case study with the ‘monospecific’ genus Aegina (Cnidaria, Hydrozoa, Narcomedusae). Mar. Biol. Res. 2017, 13, 494–512. [Google Scholar] [CrossRef]
- Brannock, P.M.; Waits, D.S.; Sharma, J.; Halanych, K.M. High-Throughput Sequencing Characterizes Intertidal Meiofaunal Communities in Northern Gulf of Mexico (Dauphin Island and Mobile Bay, Alabama). Biol. Bull. 2014, 227, 161–174. [Google Scholar] [CrossRef]
- Bucklin, A.; Steinke, D.; Blanco-Bercial, L. DNA Barcoding of Marine Metazoa. Annu. Rev. Mar. Sci. 2011, 3, 471–508. [Google Scholar] [CrossRef]
- Coissac, E.; Riaz, T.; Puillandre, N. Bioinformatic challenges for DNA metabarcoding of plants and animals. Mol. Ecol. 2012, 21, 1834–1847. [Google Scholar] [CrossRef]
- Taberlet, P.; Coissac, E.; Pompanon, F.; Brochmann, C.; Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 2012, 21, 2045–2050. [Google Scholar] [CrossRef]
- Carroll, E.L.; Gallego, R.; Sewell, M.A.; Zeldis, J.; Ranjard, L.; Ross, H.A.; Tooman, L.K.; O’Rorke, R.; Newcomb, R.D.; Constantine, R. Multi-locus DNA metabarcoding of zooplankton communities and scat reveal trophic interactions of a generalist predator. Sci. Rep. 2019, 9, 281. [Google Scholar] [CrossRef]
- Cicala, F.; Arteaga, M.C.; Herzka, S.Z.; Hereu, C.M.; Jimenez-Rosenberg, S.P.A.; Saavedra-Flores, A.; Robles-Flores, J.; Gomez, R.; Batta-Lona, P.G.; Galindo-Sanchez, C.E. Environmental conditions drive zooplankton community structure in the epipelagic oceanic water of the southern Gulf of Mexico: A molecular approach. Mol. Ecol. 2022, 31, 546–561. [Google Scholar] [CrossRef]
- Clarke, L.J.; Beard, J.M.; Swadling, K.M.; Deagle, B.E. Effect of marker choice and thermal cycling protocol on zooplankton DNA metabarcoding studies. Ecol. Evol. 2017, 7, 873–883. [Google Scholar] [CrossRef]
- Stefanni, S.; Stankovic, D.; Borme, D.; de Olazabal, A.; Juretic, T.; Pallavicini, A.; Tirelli, V. Multi-marker metabarcoding approach to study mesozooplankton at basin scale. Sci. Rep. 2018, 8, 12085. [Google Scholar] [CrossRef]
- Zhang, G.K.; Chain, F.J.J.; Abbott, C.L.; Cristescu, M.E. Metabarcoding using multiplexed markers increases species detection in complex zooplankton communities. Evol. Appl. 2018, 11, 1901–1914. [Google Scholar] [CrossRef]
- Giebner, H.; Langen, K.; Bourlat, S.J.; Kukowka, S.; Mayer, C.; Astrin, J.J.; Misof, B.; Fonseca, V.G. Comparing diversity levels in environmental samples: DNA sequence capture and metabarcoding approaches using 18S and COI genes. Mol. Ecol. Resour. 2020, 20, 1333–1345. [Google Scholar] [CrossRef]
- Wangensteen, O.S.; Palacin, C.; Guardiola, M.; Turon, X. DNA metabarcoding of littoral hard-bottom communities: High diversity and database gaps revealed by two molecular markers. PeerJ 2018, 6, e4705. [Google Scholar] [CrossRef]
- Zhao, L.N.; Zhang, X.; Xu, M.Y.; Mao, Y.; Huang, Y. DNA metabarcoding of zooplankton communities: Species diversity and seasonal variation revealed by 18S rRNA and COI. PeerJ 2021, 9, e11057. [Google Scholar] [CrossRef]
- Lindeque, P.K.; Parry, H.E.; Harmer, R.A.; Somerfield, P.J.; Atkinson, A. Next Generation Sequencing Reveals the Hidden Diversity of Zooplankton Assemblages. PLoS ONE 2013, 8, e81327. [Google Scholar] [CrossRef]
- Lobo, J.; Shokralla, S.; Costa, M.H.; Hajibabaei, M.; Costa, F.O. DNA metabarcoding for high-throughput monitoring of estuarine macrobenthic communities. Sci. Rep. 2017, 7, 15618. [Google Scholar] [CrossRef]
- Yang, J.H.; Zhang, X.W.; Xie, Y.W.; Song, C.; Zhang, Y.; Yu, H.X.; Burton, G.A. Zooplankton Community Profiling in a Eutrophic Freshwater Ecosystem-Lake Tai Basin by DNA Metabarcoding. Sci. Rep. 2017, 7, 1773. [Google Scholar] [CrossRef]
- Garcia-Vazquez, E.; Georges, O.; Fernandez, S.; Ardura, A. eDNA metabarcoding of small plankton samples to detect fish larvae and their preys from Atlantic and Pacific waters. Sci. Rep. 2021, 11, 7224. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.H.; Zhang, X.W. eDNA metabarcoding in zooplankton improves the ecological status assessment of aquatic ecosystems. Environ. Int. 2020, 134, 105230. [Google Scholar] [CrossRef]
- Davy, C.M.; Kidd, A.G.; Wilson, C.C. Development and Validation of Environmental DNA (eDNA) Markers for Detection of Freshwater Turtles. PLoS ONE 2015, 10, e0130965. [Google Scholar] [CrossRef]
- Flynn, J.M.; Brown, E.A.; Chain, F.J.J.; MacIsaac, H.J.; Cristescu, M.E. Toward accurate molecular identification of species in complex environmental samples: Testing the performance of sequence filtering and clustering methods. Ecol. Evol. 2015, 5, 2252–2266. [Google Scholar] [CrossRef]
- Harvey, J.B.J.; Johnson, S.B.; Fisher, J.L.; Peterson, W.T.; Vrijenhoek, R.C. Comparison of morphological and next generation DNA sequencing methods for assessing zooplankton assemblages. J. Exp. Mar. Biol. Ecol. 2017, 487, 113–126. [Google Scholar] [CrossRef]
- Kelly, R.P.; O’Donnell, J.L.; Lowell, N.C.; Shelton, A.O.; Samhouri, J.F.; Hennessey, S.M.; Feist, B.E.; Williams, G.D. Genetic signatures of ecological diversity along an urbanization gradient. PeerJ 2016, 4, e2444. [Google Scholar] [CrossRef]
- Olds, B.P.; Jerde, C.L.; Renshaw, M.A.; Li, Y.Y.; Evans, N.T.; Turner, C.R.; Deiner, K.; Mahon, A.R.; Brueseke, M.A.; Shirey, P.D.; et al. Estimating species richness using environmental DNA. Ecol. Evol. 2016, 6, 4214–4226. [Google Scholar] [CrossRef]
- Sala, E.; Knowlton, N. Global marine biodiversity trends. Annu. Rev. Environ. Resour. 2006, 31, 93–122. [Google Scholar] [CrossRef]
- Bailey, S.A.; Brown, L.; Campbell, M.L.; Canning-Clode, J.; Carlton, J.T.; Castro, N.; Chainho, P.; Chan, F.T.; Creed, J.C.; Curd, A.; et al. Trends in the detection of aquatic non-indigenous species across global marine, estuarine and freshwater ecosystems: A 50-year perspective. Divers. Distrib. 2020, 26, 1780–1797. [Google Scholar] [CrossRef]
- Bailey, S.A.; Brydges, T.; Casas-Monroy, O.; Kydd, J.; Linley, R.D.; Rozon, R.M.; Darling, J.A. First evaluation of ballast water management systems on operational ships for minimizing introductions of nonindigenous zooplankton. Mar. Pollut. Bull. 2022, 182, 113947. [Google Scholar] [CrossRef] [PubMed]
- Ardura, A.; Borrell, Y.J.; Fernandez, S.; Arenales, M.G.; Martinez, J.L.; Garcia-Vazquez, E. Nuisance Algae in Ballast Water Facing International Conventions. Insights DNA Metabarcoding Ships Arriving Bay Biscay. Water 2020, 12, 2168. [Google Scholar] [CrossRef]
- Ardura, A.; Zaiko, A.; Martinez, J.L.; Samulioviene, A.; Semenova, A.; Garcia-Vazquez, E. eDNA and specific primers for early detection of invasive species—A case study on the bivalve Rangia cuneata, currently spreading in Europe. Mar. Environ. Res. 2015, 112, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Borrell, Y.J.; Miralles, L.; Do Huu, H.; Mohammed-Geba, K.; Garcia-Vazquez, E. DNA in a bottle-Rapid metabarcoding survey for early alerts of invasive species in ports. PLoS ONE 2017, 12, e0183347. [Google Scholar] [CrossRef]
- QGIS. QGIS Geographic Information System. Open Source Geospatial Foundation Project; Version: 3.28.3; QGIS Development Team: Firenze, Italy, 2024. [Google Scholar]
- Leray, M.; Yang, J.Y.; Meyer, C.P.; Mills, S.C.; Agudelo, N.; Ranwez, V.; Boehm, J.T.; Machida, R.J. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: Application for characterizing coral reef fish gut contents. Frontiers in Zoology. Front Zool 2013, 10, 34. [Google Scholar] [CrossRef]
- Folmer, O.; Black, M.; Wr, H.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial Cytochrome C oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Pitz, K.J.; Guo, J.C.; Johnson, S.B.; Campbell, T.L.; Zhang, H.B.; Vrijenhoek, R.C.; Chavez, F.P.; Geller, J. Zooplankton biogeographic boundaries in the California Current System as determined from metabarcoding. PLoS ONE 2020, 15, e0235159. [Google Scholar] [CrossRef]
- Sommer, S.A.; Van Woudenberg, L.; Lenz, P.H.; Cepeda, G.; Goetze, E. Vertical gradients in species richness and community composition across the twilight zone in the North Pacific Subtropical Gyre. Mol Ecol. 2017, 26, 6136–6156. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Estaki, M.; Jiang, L.; Bokulich, N.A.; McDonald, D.; González, A.; Kosciolek, T.; Martino, C.; Zhu, Q.; Birmingham, A.; Vázquez-Baeza, Y.; et al. QIIME 2 enables comprehensive end-to-end analysis of diverse microbiome data and comparative studies with publicly available data. Curr. Protoc. Bioinform. 2020, 70, e100. [Google Scholar] [CrossRef]
- Buchner, D.; Leese, F. BOLDigger – a Python package to identify and organise sequences with the Barcode of Life Data systems. Metabarcoding Metagenomics 2020, 4, e53535. [Google Scholar] [CrossRef]
- Baker, C.B. A utility to generate input files for taxonomy assignment in QIIME from the NCBI database. Available online: https://github.com/bakerccm/entrez_qiime (accessed on 1 September 2024).
- Robeson, M.S.; O’Rourke, D.R.; Kaehler, B.D.; Ziemski, M.; Dillon, M.R.; Foster, J.T.; Bokulich, N.A. RESCRIPt: Reproducible sequence taxonomy reference database management for the masses. PLoS Comput. Biol. 2021, 17, e1009581. [Google Scholar] [CrossRef]
- Gao, C.H.; Yu, G.C.; Cai, P. ggVennDiagram: An Intuitive, Easy-to-Use, and Highly Customizable R Package to Generate Venn Diagram. Front. Genet. 2021, 12, 706907. [Google Scholar] [CrossRef] [PubMed]
- vegan: Community Ecology Package. Available online: https://cran.r-project.org/web/packages/vegan/vegan.pdf (accessed on 1 September 2024).
- Kerns, G.J.; Chang, G.A. RcmdrPlugin.IPSUR: An IPSUR Plugin for the R Commander. Available online: https://ipsur.r-forge.r-project.org/rcmdrplugin/installation.php (accessed on 1 September 2024).
- De Caceres, M.; Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 2009, 90, 3566–3574. [Google Scholar] [CrossRef] [PubMed]
- AquaNIS. Information system on Aquatic Non-Indigenous and Cryptogenic Species. Available online: http://www.corpi.ku.lt/databases/index.php/aquanis/ (accessed on 1 September 2024).
- WoRMS EB. World Register of Marine Species. Available online: https://www.marinespecies.org/ (accessed on 1 September 2024).
- Razouls, C.D.N.; Kouwenberg, J.; de Bovée, F. Biodiversity of Marine Planktonic Copepods (Morphology, Geographical Distribution and Biological Data). Available online: http://copepodes.obs-banyuls.fr/en (accessed on 20 January 2024).
- RStudio Team. RStudio: Integrated Development for R; RStudio, PBC: Boston, MA, USA, 2020; Available online: http://www.rstudio.com/ (accessed on 20 January 2024).
- Hebert, P.D.N.; Ratnasingham, S.; deWaard, J.R. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. B-Biol. Sci. 2003, 270, S96–S99. [Google Scholar] [CrossRef]
- Bucklin, A.; Hopcroft, R.R.; Kosobokova, K.N.; Nigro, L.M.; Ortman, B.D.; Jennings, R.M.; Sweetman, C.J. DNA barcoding of Arctic Ocean holozooplankton for species identification and recognition. Deep Sea Res. Part II Top. Stud. Oceanogr. 2010, 57, 40–48. [Google Scholar] [CrossRef]
- Geller, J.; Meyer, C.; Parker, M.; Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 2013, 13, 851–861. [Google Scholar] [CrossRef]
- Stoeckle, M.Y.; Hebert, P.D.N. Barcode of life. Sci. Am. 2008, 299, 82. [Google Scholar] [CrossRef]
- Bik, H.M.; Porazinska, D.L.; Creer, S.; Caporaso, J.G.; Knight, R.; Thomas, W.K. Sequencing our way towards understanding global eukaryotic biodiversity. Trends Ecol. Evol. 2012, 27, 233–243. [Google Scholar] [CrossRef]
- Suter, L.; Polanowski, A.M.; Clarke, L.J.; Kitchener, J.A.; Deagle, B.E. Capturing open ocean biodiversity: Comparing environmental DNA metabarcoding to the continuous plankton recorder. Mol. Ecol. 2021, 30, 3140–3157. [Google Scholar] [CrossRef]
- Sawaya, N.A.; Djurhuus, A.; Closek, C.J.; Hepner, M.; Olesin, E.; Visser, L.; Kelble, C.; Hubbard, K.; Breitbart, M. Assessing eukaryotic biodiversity in the Florida Keys National Marine Sanctuary through environmental DNA metabarcoding. Ecol. Evol. 2019, 9, 1029–1040. [Google Scholar] [CrossRef] [PubMed]
- Ershova, E.A.; Descoteaux, R.; Wangensteen, O.S.; Iken, K.; Hoperoft, R.R.; Smoot, C.; Grebmeier, J.M.; Bluhm, B.A. Diversity and Distribution of Meroplanktonic Larvae in the Pacific Arctic and Connectivity with Adult Benthic Invertebrate Communities. Front. Mar. Sci. 2019, 6, 490. [Google Scholar] [CrossRef]
- Miralles, A.; Bruy, T.; Wolcott, K.; Scherz, M.D.; Begerow, D.; Beszteri, B.; Bonkowski, M.; Felden, J.; Gemeinholzer, B.; Glaw, F.; et al. Repositories for Taxonomic Data: Where We Are and What is Missing. Syst. Biol. 2020, 69, 1231–1253. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Bercial, L.; Cornils, A.; Copley, N.; Bucklin, A. DNA barcoding of marine copepods: Assessment of analytical approaches to species identification. PLoS Curr. 2014, 6, 6. [Google Scholar] [CrossRef]
- Abad, D.; Albaina, A.; Aguirre, M.; Estonba, A. 18S V9 metabarcoding correctly depicts plankton estuarine community drivers. Mar. Ecol. Prog. Ser. 2017, 584, 31–43. [Google Scholar] [CrossRef]
- Albaina, A.; Aguirre, M.; Abad, D.; Santos, M.; Estonba, A. 18S rRNA V9 metabarcoding for diet characterization: A critical evaluation with two sympatric zooplanktivorous fish species. Ecol. Evol. 2016, 6, 1809–1824. [Google Scholar] [CrossRef] [PubMed]
- Andruszkiewicz, E.A.; Sassoubre, L.M.; Boehm, A.B. Persistence of marine fish environmental DNA and the influence of sunlight. PLoS ONE 2017, 12, e0185043. [Google Scholar] [CrossRef]
- Port, J.A.; O’Donnell, J.L.; Romero-Maraccini, O.C.; Leary, P.R.; Litvin, S.Y.; Nickols, K.J.; Yamahara, K.M.; Kelly, R.P. Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA. Mol. Ecol. 2016, 25, 527–541. [Google Scholar] [CrossRef]
- Goetze, E. Species discovery in marine planktonic invertebrates through global molecular screening. Mol. Ecol. 2010, 19, 952–967. [Google Scholar] [CrossRef]
- Lindeque, P.K.; Harris, R.P.; Jones, M.B.; Smerdon, G.R. Simple molecular method to distinguish the identity of Calanus species (Copepoda: Calanoida) at any developmental stage. Mar. Biol. 1999, 133, 91–96. [Google Scholar] [CrossRef]
- Lindsay, D.; Grossmann, M.; Nishikawa, J.; Bentlage, B.; Collins, A. DNA barcoding of pelagic cnidarians: Current status and future prospects. Bull. Plankton Soc. Jpn. 2015, 62, 39–43. [Google Scholar]
- Johansson, M.L.; Shiganova, T.A.; Ringvold, H.; Stupnikova, A.N.; Heath, D.D.; MacIsaac, H.J. Molecular Insights Into the Ctenophore Genus Beroe in Europe: New Species, Spreading Invaders. J. Hered. 2018, 109, 520–529. [Google Scholar] [CrossRef]
- Bowman, R.E. Food of Northwest Atlantic Fishes and Two Common Species of Squid. In NOAA Technical Memorandum NMFS-NE-155; Northeast Fisheries Science Center (U.S.): Woods Hole, MA, USA, 2000. [Google Scholar]
- CJ, P.V.; Carballo, J.L.; Camacho, M.L. A qualitative assessment of sponge-feeding organisms from the Mexican Pacific coast. Open Mar. Biol. J. 2010, 4, 39–46. [Google Scholar]
- Lorders, F.L.; Miranda, R.J.; Nunes, J.; Barros, F. Spongivory by Fishes on Southwestern Atlantic Coral Reefs: No Evidence of Top-Down Control on Sponge Assemblages. Front. Mar. Sci. 2018, 5, 256. [Google Scholar] [CrossRef]
- Holland, L.Z. Tunicates. Curr. Biol. 2016, 26, R146–R152. [Google Scholar] [CrossRef]
- Sadro, S. Porifera: The Sponges; 2008; Available online: https://api.semanticscholar.org/CorpusID:5650532 (accessed on 1 September 2024).
- Cornwell, L.E.; Fileman, E.S.; Bruun, J.T.; Hirst, A.G.; Tarran, G.A.; Findlay, H.S.; Lewis, C.; Smyth, T.J.; McEvoy, A.J.; Atkinson, A. Resilience of the Copepod Oithona similis to Climatic Variability: Egg Production, Mortality, and Vertical Habitat Partitioning. Front. Mar. Sci. 2020, 7, 29. [Google Scholar] [CrossRef]
- Hure, M.; Batistic, M.; Garic, R. Copepod Diel Vertical Distribution in the Open Southern Adriatic Sea (NE Mediterranean) under Two Different Environmental Conditions. Water 2022, 14, 1901. [Google Scholar] [CrossRef]
- Bucklin, A.; Yeh, H.D.; Questel, J.M.; Richardson, D.E.; Reese, B.; Copley, N.J.; Wiebe, P.H. Time-series metabarcoding analysis of zooplankton diversity of the NW Atlantic continental shelf. ICES J. Mar. Sci. 2019, 76, 1162–1176. [Google Scholar] [CrossRef]
- Kelly, R.P.; Closek, C.J.; O’Donnell, J.L.; Kralj, J.E.; Shelton, A.O.; Samhouri, J.F. Genetic and Manual Survey Methods Yield Different and Complementary Views of an Ecosystem. Front. Mar. Sci. 2017, 3, 283. [Google Scholar] [CrossRef]
- Chan, F.T.; Briski, E.; Bailey, S.A.; MacIsaac, H.J. Richness-abundance relationships for zooplankton in ballast water: Temperate versus Arctic comparisons. ICES J. Mar. Sci. 2014, 71, 1876–1884. [Google Scholar] [CrossRef]
- Cariton, J.T.; Geller, J.B. Ecological Roulette: The Global Transport of Nonindigenous Marine Organisms. Science 1993, 261, 78–82. [Google Scholar] [CrossRef]
- Sardain, A.; Sardain, E.; Leung, B. Global forecasts of shipping traffic and biological invasions to 2050. Nat. Sustain. 2019, 2, 274–282. [Google Scholar] [CrossRef]
- von Ammon, U.; Wood, S.A.; Laroche, O.; Zaiko, A.; Tait, L.; Lavery, S.; Inglis, G.J.; Pochon, X. Combining morpho-taxonomy and metabarcoding enhances the detection of non-indigenous marine pests in biofouling communities. Sci. Rep. 2018, 8, 16290. [Google Scholar] [CrossRef] [PubMed]
- Cornils, A.; Held, C. Evidence of cryptic and pseudocryptic speciation in the Paracalanus parvus species complex (Crustacea, Copepoda, Calanoida). Front. Zool. 2014, 11, 19. [Google Scholar] [CrossRef]
- Ounissi, M.; Khelifi-Touhami, M. Le Zooplancton du plateau continental d’El-Kala (Méditerranée sud-occidentale): Composition et abondance en mai 1996. J. Rech. Océanogr. 1999, 24, 5–11. [Google Scholar]
COI | 18S rRNA | |
---|---|---|
Percentage of identification (species level) | ≥97% | ≥99% |
Databases used for taxonomic classification | NCBI BOLD BOLDigger (software) | NCBI SILVA |
Database download | NCBI (downloaded for use in QIIME’s blast):
| NCBI (downloaded for use in QIIME’s blast):
|
BOLD (downloaded for use in QIIME’s blast)
| SILVA (downloaded for use in QIIME’s blast)
|
Marker Genes | DNA Sources | Morphological | |||
---|---|---|---|---|---|
Totals | COI | 18S rRNA | eDNA | CeDNA | |
Total input reads | 1,012,606 | 1,049,204 | 1,100,781 | 961,029 | --- |
Total non-chimeric reads | 749,150 | 648,605 | 796,070 | 601,685 | --- |
Number of total ASVs | 2392 | 1585 | 3021 | 1211 | --- |
Total reads (filtered taxa) | 316,428 | 368,787 | 324,183 | 361,032 | --- |
Number of ASVs (filtered taxa) | 536 | 166 | 154 | 590 | --- |
Number of classes identified (filtered taxa) | 20 | 20 | 22 | 26 | 14 |
Number of genera identified (filtered taxa) | 170 | 85 | 68 | 193 | 30 |
Number of species identified (filtered taxa) | 234 | 97 | 105 | 271 | 38 |
Species only retrieved by the approach | 172 | 56 | 26 | 181 | 8 |
Taxa | AquaNIS Portugal | AquaNIS Spain | AquaNIS Maca | AquaNIS NE Atlantic | AquaNIS Medi-Blac Seas | Native Region |
---|---|---|---|---|---|---|
Copepoda | ||||||
Acartia (Acanthacartia) tonsa (Dana, 1849) | R | R | - | R | R | Indian and Pacific Oceans |
Oithona plumifera (Baird, 1843) | - | - | - | R | R | Pacific Ocean |
Clausocalanus arcuicornis arcuicornis (Dana, 1849) | - | - | - | - | R | Circum-global tropical and subtropical |
Cirripedia | ||||||
Amphibalanus improvisus (Darwin, 1854) | R | R | R | R | R | NW Atlantic |
Austrominius modestus (Darwin, 1854) | R | R | R | R | R | Pacific Ocean |
Balanus trigonus (Darwin, 1854) | R | R | R | R | R | Indo-Pacific Oceans |
Branchiopoda | ||||||
Penilia avirostris (Dana, 1849) | - | - | - | R | R | Asia, New Zealand |
Ascidiacea | ||||||
Ecteinascidia turbinata (Herdman, 1880) | - | - | - | R | R | NW Atlantic Ocean |
Perophora japonica (Oka, 1927) | - | R | - | R | - | NW Pacific Ocean |
Hydrozoa | ||||||
Ectopleura crocea (Agassiz, 1862) | - | - | R | - | - | Atlantic coast of North America |
List of 10 Most Abundant Potential NIS | Total Number of Reads | Gene | Native Region |
---|---|---|---|
Paracalanus quasimodo (Bowman, 1971) | 119669 | COI | Gulf of Mexico |
Paracalanus indicus (Wolfenden, 1905) | 22447 | COI | Tropical and subtropical waters |
Oncaea waldemari (Bersano & Boxshall, 1996) | 6054 | COI | Southern Brazil |
Calanoides acutus (Giesbrecht, 1902) | 4217 | 18S rRNA | Antarctic Ocean |
Oncaea scottodicarloi (Heron & Bradford-Grieve, 1995) | 1284 | COI | Pacific Ocean |
Ascidia ahodori (Oka, 1927) | 1273 | COI | Northwest Pacific |
Subeucalanus subtenuis (Giesbrecht, 1888) | 1241 | 18S rRNA | Circum-global tropical and subtropical waters |
Ectopleura dumortierii (Van Beneden, 1844) | 1132 | COI | Mediterranean Sea, northeast (France and UK) and northwest Atlantic |
Nyctiphanes simplex (Hansen, 1911) | 1051 | 18S rRNA | North and equatorial Pacific |
Temora stylifera (Dana, 1849) | 518 | COI | Western Pacific and Western Central Atlantic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simões, M.; Cotrim Marques, S.; Costa, C.; da Luz Calado, M.; Lobo-Arteaga, J.; Bartilotti, C.; Jorge Campos, M.; Leandro, S.M.; Antunes, A. The Advantages of Combining Morphological and Molecular Methods to Characterise Zooplankton Communities: A Case Study of the UNESCO Biosphere Reserve of the Berlengas Archipelago, Portugal. Oceans 2024, 5, 805-824. https://doi.org/10.3390/oceans5040046
Simões M, Cotrim Marques S, Costa C, da Luz Calado M, Lobo-Arteaga J, Bartilotti C, Jorge Campos M, Leandro SM, Antunes A. The Advantages of Combining Morphological and Molecular Methods to Characterise Zooplankton Communities: A Case Study of the UNESCO Biosphere Reserve of the Berlengas Archipelago, Portugal. Oceans. 2024; 5(4):805-824. https://doi.org/10.3390/oceans5040046
Chicago/Turabian StyleSimões, Marco, Sónia Cotrim Marques, Cátia Costa, Maria da Luz Calado, Jorge Lobo-Arteaga, Cátia Bartilotti, Maria Jorge Campos, Sérgio Miguel Leandro, and Agostinho Antunes. 2024. "The Advantages of Combining Morphological and Molecular Methods to Characterise Zooplankton Communities: A Case Study of the UNESCO Biosphere Reserve of the Berlengas Archipelago, Portugal" Oceans 5, no. 4: 805-824. https://doi.org/10.3390/oceans5040046
APA StyleSimões, M., Cotrim Marques, S., Costa, C., da Luz Calado, M., Lobo-Arteaga, J., Bartilotti, C., Jorge Campos, M., Leandro, S. M., & Antunes, A. (2024). The Advantages of Combining Morphological and Molecular Methods to Characterise Zooplankton Communities: A Case Study of the UNESCO Biosphere Reserve of the Berlengas Archipelago, Portugal. Oceans, 5(4), 805-824. https://doi.org/10.3390/oceans5040046