Previous Issue
Volume 5, September
 
 

Oceans, Volume 5, Issue 4 (December 2024) – 10 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
17 pages, 7982 KiB  
Article
Integrating Hydrodynamic Modeling with Ecological Risk Assessment for Selecting Sites for Artificial Reef Deployment: Avoiding Coastal Pollution Risks in Kish Island, Persian Gulf
by Shadan Nasseri Doust, Mehrnoosh Abbasian, S. Abbas Haghshenas, Michael J. Risk and Craig A. Downs
Oceans 2024, 5(4), 889-905; https://doi.org/10.3390/oceans5040051 - 19 Nov 2024
Viewed by 301
Abstract
The decline of natural coral reefs has spurred interest in artificial reef construction and reef rehabilitation efforts. However, many restoration programs are failing because of poor water quality and localized pollution factors. This paper examines one etiology of coral restoration failure, highlighting the [...] Read more.
The decline of natural coral reefs has spurred interest in artificial reef construction and reef rehabilitation efforts. However, many restoration programs are failing because of poor water quality and localized pollution factors. This paper examines one etiology of coral restoration failure, highlighting the need for careful site selection based on hydrodynamic, biological, and pollution criteria. Using Kish Island as a case study, we outline a procedure for determining placement of artificial reefs to minimize external pollution impacts, which could be applied to any reef site worldwide. Our integration of computational modeling and geographic information systems enables the tracking of pollution dispersion and increases the power of restoration efforts. The RQ Plume modeling, used alongside compound pollutant modeling, can identify hotspots with the highest potential to degrade marine environments, particularly reefs. Conservation efforts should prioritize pollution mitigation, as seen in the case of sunscreen pollutants at Kish Island, where regulatory action and public education can contribute to reef protection. This comprehensive approach underscores the critical role of water quality in successful reef restoration and conservation strategies. Full article
Show Figures

Figure 1

15 pages, 2143 KiB  
Article
Seagrass-Associated Biodiversity Influences Organic Carbon in a Temperate Meadow
by Lowri O’Neill, Bettina Walter and Richard K. F. Unsworth
Oceans 2024, 5(4), 874-888; https://doi.org/10.3390/oceans5040050 - 5 Nov 2024
Viewed by 781
Abstract
There is increasing interest in the role that seagrasses play in storing carbon in the context of climate mitigation, but many knowledge gaps in the factors controlling this storage exist. Here, we provide a small case study that examines the role of infaunal [...] Read more.
There is increasing interest in the role that seagrasses play in storing carbon in the context of climate mitigation, but many knowledge gaps in the factors controlling this storage exist. Here, we provide a small case study that examines the role of infaunal biodiversity in influencing seagrass and the carbon stored in its sediments. A total of 25 species of invertebrate were recorded in an intertidal Zostera marina meadow, where these species were dominated by polychaete worms with no bivalves present. We find organic carbon storage (within the top 20 cm) measured by AFDW to be highly variable within a small area of seagrass meadow ranging from 2961 gC.m−2 to 11,620 gC.m−2 with an average (±sd) of 64602 ± 3274 gC.m−2. Our analysis indicates that infaunal communities are significantly and negatively correlated with this sediment organic carbon. However, this effect is not as influential as hypothesised, and the relatively small sample size of the present study limits its ability to provide strong causality. Other factors, such as algal abundance, curiously had a potentially stronger influence on the carbon in the upper sediments. The increasing richness of infauna is likely reducing the build-up of organic carbon, reducing its ecosystem service role. We believe this to likely be the result of bioturbation by specific species such as Arenicola marina and Ampharete acutifrons. A change in sediment organic carbon suggests that these species could be key drivers of bioturbator-initiated redox-driven organic matter turnovers, influencing the microbial processes and remobilizing sediment compounds. Bioturbators should be considered as a limitation to Corg storage when managing seagrass Corg stocks; however, bioturbation is a natural process that can be moderated when an ecosystem is less influenced by anthropogenic change. The present study only provides small-scale correlative evidence with a range of surprising results; confirming these results within temperate seagrasses requires examining this process at large spatial scales or with targeted experiments. Full article
Show Figures

Figure 1

17 pages, 1113 KiB  
Article
The Impact of Perfluorooctanoic Acid (PFOA) on the Mussel Mytilus galloprovincialis: A Multi-Biomarker Evaluation
by Sandra Copeto, Sara Ganço, Inês João Ferreira, Didier Sanchez, Maria João Nunes, Carla Motta, Marco Silva and Mário Diniz
Oceans 2024, 5(4), 857-873; https://doi.org/10.3390/oceans5040049 - 5 Nov 2024
Viewed by 522
Abstract
Perfluorooctanoic acid (PFOA) has been widely studied due to its environmental persistence and bioaccumulation potential, raising concerns about its effects on aquatic life. This research evaluates the impact of PFOA on the antioxidant defenses and stress response systems of the mussel Mytilus galloprovincialis [...] Read more.
Perfluorooctanoic acid (PFOA) has been widely studied due to its environmental persistence and bioaccumulation potential, raising concerns about its effects on aquatic life. This research evaluates the impact of PFOA on the antioxidant defenses and stress response systems of the mussel Mytilus galloprovincialis. Mussels were exposed to three concentrations of PFOA (1, 10, and 100 µg·L−1) over 28 days. Several biomarkers, including glutathione S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), lipid peroxidation (LPO), total antioxidant capacity (TAC), vitellogenin (VTG), ubiquitin (UBI), and caspase-3 (CASP) were analyzed. The results suggest stress responses, particularly in animals exposed to higher concentrations, as shown by GST and SOD activities which increased according to PFOA concentrations. Additionally, oxidative stress markers such as MDA and CAT showed variable responses depending on the exposure concentration tested. This study underscores the need for further investigation into the effects of PFOA on mollusks but also the need to unveil gender-specific responses in aquatic organisms exposed to this contaminant. The concentrations of PFOA used in our research are lower than those examined in previous studies, providing crucial insights into the impacts of even minimal exposure levels. It highlights the potential of M. galloprovincialis as a bioindicator in environmental monitoring programs, providing crucial insights for environmental management and policymaking regarding regulating and monitoring PFOA in marine settings. Consequently, in a country where seafood consumption is the second largest in Europe, implementing environmental policies and regulatory measures to manage and monitor PFOA levels in marine environments is crucial. Full article
Show Figures

Figure 1

17 pages, 9729 KiB  
Article
Characterizing the Tropical Cyclones Activity over Arabian Sea (1982–2021)
by Abdulhaleem H. Labban, H. M. Hasanean, Ali Almahri, Ali Salem Al-Sakkaf and Mahmoud A. A. Hussein
Oceans 2024, 5(4), 840-856; https://doi.org/10.3390/oceans5040048 - 4 Nov 2024
Viewed by 541
Abstract
The current study looks at how the characteristics of Arabian Sea tropical cyclones (TCs) change over time. The results show that in the pre-monsoon (April–June) and the post-monsoon (October–December), the activity of TCs > 34 knots, including cyclonic storm (CS), severe cyclonic storm [...] Read more.
The current study looks at how the characteristics of Arabian Sea tropical cyclones (TCs) change over time. The results show that in the pre-monsoon (April–June) and the post-monsoon (October–December), the activity of TCs > 34 knots, including cyclonic storm (CS), severe cyclonic storm (SCS), very severe cyclonic storm (VSCS), extreme severe cyclonic storm (ESCS), and super cyclonic storm (Sup. CS), has significantly increased, while the tendency of TCs < 34 knots, depressions and deep depressions (Ds) over the Arabian Sea has only slightly increased. Most of the TC activity in the first two decades (1982–2001) over the Arabian Sea activated on the eastern side, while in the last two decades (2002–2021), there was an expansion toward the southwest region of the Arabian Sea, especially in the post-monsoon season. The composite analysis of environmental parameters over the Arabian Sea reveals that the negative anomalies of outgoing longwave radiation (OLR) and the positive anomalies of relative humidity at 500 hPa (RH–500 hPa) in the first decade (1982–1991) and the second decade (1992–2001) are more concentrated on the eastern side of the Arabian Sea, leading to increased activity for TCs. Decades three (2002–2011) and four (2012–2021) demonstrated a wide distribution of weak vertical wind shear (VWS) and strong convection (OLR and RH–500 hPa) over the Arabian Sea basin. This led to TCs occurring more frequently and stronger, especially in the post-monsoon season. SST over the Arabian Sea was sufficient for tropical storm activity (≥26.5 °C) for both typical seasons. Full article
Show Figures

Figure 1

15 pages, 1835 KiB  
Article
Inventory of Shallow-Water Fouling Invertebrates of Long Island, New York
by Ezra Roesch, Jack H. Rosencrans, Kent A. Hatch and Robert W. Thacker
Oceans 2024, 5(4), 825-839; https://doi.org/10.3390/oceans5040047 - 1 Nov 2024
Viewed by 754
Abstract
Invasive marine invertebrates are increasingly recognized as a potential disturbance to coastal ecosystems. We sought to better document the taxonomic composition of subtidal communities around Long Island to obtain a baseline that can be used to monitor current and future invasions of non-indigenous [...] Read more.
Invasive marine invertebrates are increasingly recognized as a potential disturbance to coastal ecosystems. We sought to better document the taxonomic composition of subtidal communities around Long Island to obtain a baseline that can be used to monitor current and future invasions of non-indigenous species. We placed settlement blocks at 18 sites along the coast of Long Island, New York, for three months. After recovering blocks at 12 sites, we analyzed the taxonomic composition of fouling communities on the blocks. We observed 64 invertebrate and 3 algal taxa, with large variation in taxon richness among sites. Multivariate analyses revealed that although taxon composition was significantly dissimilar between north and south shores, variation in dissimilarity did not differ significantly between shores. The high variability in taxon composition observed among sites indicates that additional research is needed to expand our knowledge of invertebrate diversity in the waters surrounding Long Island. Adding more sites and replicate blocks within sites could improve future sampling designs. This research will benefit continuing efforts to monitor, manage, and prevent the establishment of marine invasive species. Full article
(This article belongs to the Topic Conservation and Management of Marine Ecosystems)
Show Figures

Figure 1

20 pages, 1392 KiB  
Article
The Advantages of Combining Morphological and Molecular Methods to Characterise Zooplankton Communities: A Case Study of the UNESCO Biosphere Reserve of the Berlengas Archipelago, Portugal
by Marco Simões, Sónia Cotrim Marques, Cátia Costa, Maria da Luz Calado, Jorge Lobo-Arteaga, Cátia Bartilotti, Maria Jorge Campos, Sérgio Miguel Leandro and Agostinho Antunes
Oceans 2024, 5(4), 805-824; https://doi.org/10.3390/oceans5040046 - 26 Oct 2024
Viewed by 585
Abstract
Understanding the ecological dynamics of zooplankton communities is crucial to precisely assessing the health of marine ecosystems and their management. Metabarcoding has contributed to a better understanding of biodiversity in marine environments. However, this methodology still requires protocol optimisation. Here, we used a [...] Read more.
Understanding the ecological dynamics of zooplankton communities is crucial to precisely assessing the health of marine ecosystems and their management. Metabarcoding has contributed to a better understanding of biodiversity in marine environments. However, this methodology still requires protocol optimisation. Here, we used a complementary approach combining molecular and morphological identification methods to identify the zooplankton community inhabiting the Berlengas Archipelago, Portugal. The presence of non-indigenous species was also assessed. The results showed that the metabarcoding approach outperformed the classical morphological identification method, detecting more species with higher resolution. Nevertheless, the classical method was able to identify species that were not detected by the molecular approaches, probably due to a lack of reference data in the databases. The comparison between different molecular approaches showed that COI and bulk DNA gave better results than 18S rRNA and eDNA by detecting higher species diversity. However, complementarities were observed between them. Molecular tools also proved effective in identifying several potential non-indigenous species, identifying, for the first time, several potentially unreported NIS inhabiting the Portuguese marine ecosystems. Overall, our results confirmed the importance of combining both classical and molecular methods to obtain a more refined assessment of the zooplanktonic communities in marine environments. Full article
Show Figures

Figure 1

20 pages, 5550 KiB  
Article
Vertical Shear, Diapycnal Shear and the Gradient Richardson Number
by Josep L. Pelegrí, Mariona Claret and Pablo Sangrà
Oceans 2024, 5(4), 785-804; https://doi.org/10.3390/oceans5040045 - 17 Oct 2024
Viewed by 1054
Abstract
In Cartesian coordinates x,y,z, the gradient Richardson number Ri is the ratio between the square of the buoyancy frequency N and the square of the vertical shear S, Ri=N2/S2 [...] Read more.
In Cartesian coordinates x,y,z, the gradient Richardson number Ri is the ratio between the square of the buoyancy frequency N and the square of the vertical shear S, Ri=N2/S2, where N2=g/ρ ρ/z and S2=u/z2+v/z2, with ρ potential density, u,v the horizontal velocity components and g gravity acceleration. In isopycnic coordinates x,y,ρ, Ri is expressed as the ratio between M2N2 and the squared diapycnal shear Sρ2=ρ/g2u/ρ2+v/ρ2, Ri=M2/Sρ2. This could suggest that a decrease (increase) in stratification brings a decrease (increase) in dynamic stability in Cartesian coordinates, but a stability increase (decrease) in isopycnic coordinates. The apparently different role of stratification arises because S and Sρ are related through the stratification itself, Sρ=S/N2. In terms of characteristic times, this is equivalent to τSρ=to2/td, which is interpreted as a critical dynamic time τ that equals the buoyancy period toN1 normalized by the ratio td/to, where td=S1 is the deformation time. Here we follow simple arguments and use field data from three different regions (island shelf break, Gulf Stream and Mediterranean outflow) to endorse the usefulness of the isopycnal approach. In particular, we define the reduced squared diapycnal shear σρ2=Sρ2M2 and compare it with the reduced squared vertical σ2=S2N2, both being positive (negative) for unstable (stable) conditions. While both Ri and σ2 remain highly variable for all stratification conditions, the mean σρ2 values approach Sρ2 with increasing stratification. Further, the field data follow the relation σρ2=1Ri/N2Ri, with a subcritical Ri=0.22 for both the island shelf break and the Mediterranean outflow. We propose σρ2 and Sρ2 to be good indexes for the occurrence of effective mixing under highly stratified conditions. Full article
(This article belongs to the Special Issue Feature Papers of Oceans 2024)
Show Figures

Figure 1

15 pages, 3745 KiB  
Article
Influence of Dolphin-Watching Tourism Vessels on the Whistle Emission Pattern of Common Dolphins and Bottlenose Dolphins
by Ana A. Silva, Joana Castro, André Cid, Sérgio M. Jesus and Fábio L. Matos
Oceans 2024, 5(4), 770-784; https://doi.org/10.3390/oceans5040044 - 16 Oct 2024
Viewed by 2112
Abstract
Recent years have seen a notable rise in dolphin-watching boat activities along the Algarve coast in Portugal, potentially affecting the common dolphin (Delphinus delphis) and bottlenose dolphin (Tursiops truncatus) local populations. This study examines the impact of increasing underwater [...] Read more.
Recent years have seen a notable rise in dolphin-watching boat activities along the Algarve coast in Portugal, potentially affecting the common dolphin (Delphinus delphis) and bottlenose dolphin (Tursiops truncatus) local populations. This study examines the impact of increasing underwater noise levels from these boats on dolphin vocalizations. Field recordings were conducted from June to September 2022, analyzing dolphin whistles in various boat presence scenarios. The results indicate significant changes in whistle-frequency characteristics with boat presence, including increased start, low, and high frequencies, alongside a decrease in the number of inflection points in modulated whistles. The changes might negatively impact dolphin populations viability, underscoring the need for further research. Additionally, improved mitigation strategies may be necessary to reduce the potential negative effects of dolphin watching on cetacean communication and behavior in the Algarve region. Full article
Show Figures

Figure 1

12 pages, 2216 KiB  
Article
The Effects of Elevated Temperatures on the Reproductive Biology of a Mediterranean Coral, Oculina patagonica
by Tamar Shemesh, Shani Levy, Abigail Einbinder, Itai Kolsky, Jessica Bellworthy and Tali Mass
Oceans 2024, 5(4), 758-769; https://doi.org/10.3390/oceans5040043 - 9 Oct 2024
Viewed by 1637
Abstract
Global climate change is profoundly impacting coral ecosystems. Rising sea surface temperatures, in particular, disrupt coral reproductive synchrony, cause bleaching, and mortality. Oculina patagonica, a temperate scleractinian coral abundant across the Mediterranean Sea, can grow at a temperature range of 10–31 °C. [...] Read more.
Global climate change is profoundly impacting coral ecosystems. Rising sea surface temperatures, in particular, disrupt coral reproductive synchrony, cause bleaching, and mortality. Oculina patagonica, a temperate scleractinian coral abundant across the Mediterranean Sea, can grow at a temperature range of 10–31 °C. Studies conducted three decades ago documented this species bleaching during the summer months, the same time as its gonads mature. However, the Eastern Mediterranean Sea is experiencing some of the fastest-warming sea surface temperatures worldwide. This study repeated the year-round in situ assessment of the reproductive cycle and gonad development and correlation to summer bleaching. In addition, thermal performance of the holobiont was assessed in an ex situ thermal stress experiment. In situ monitoring revealed no temporal changes in gonad development compared to previous studies, despite sea surface warming and concurrent bleaching. Experimental thermal performance curves indicated that photosynthetic rate peaked at 23 °C, bleached coral area was significant at 29 °C, and peaked at 34 °C. With local sea surface temperature reaching 31 °C, O. patagonica is exposed beyond its bleaching threshold during the summer months in situ. Despite this, O. patagonica maintains gonad development and physiologically recovers at the end of summer demonstrating resilience to current warming trends. Full article
Show Figures

Figure 1

16 pages, 6713 KiB  
Article
Determination of Submerged Breakwater Efficiency Using Computational Fluid Dynamics
by Smiljko Rudan and Šimun Sviličić
Oceans 2024, 5(4), 742-757; https://doi.org/10.3390/oceans5040042 - 1 Oct 2024
Viewed by 814
Abstract
Wind-induced waves can lead to the partial or complete wash-over of beaches, causing erosion that impacts both the landscape and tourist infrastructure. In some regions of the world, e.g., Croatia, this process, which usually occurs during a harsh winter, has a major impact [...] Read more.
Wind-induced waves can lead to the partial or complete wash-over of beaches, causing erosion that impacts both the landscape and tourist infrastructure. In some regions of the world, e.g., Croatia, this process, which usually occurs during a harsh winter, has a major impact on the environment and the economy, and preventing or reducing this process is highly desirable. One of the simplest methods to reduce or prevent beach erosion is the use of innovative underwater structures designed to decrease wave energy by reducing wave height. In this study, submerged breakwaters are numerically investigated using various topologies, positions, and angles relative to the free surface. Not only is the optimal topology determined, but the most efficient arrangement of multiple breakwaters is also determined. The advantage of newly developed submerged breakwaters over traditional ones (rock-fixed piers) is that they do not require complex construction, massive foundations, or high investment costs. Instead, they comprise simple floating bodies connected to the seabed by mooring lines. This design makes them not only cheap, adaptable, and easy to install but also environmentally friendly, as they have little impact on the seabed and the environment. To evaluate wave damping effectiveness, the incompressible computational fluid dynamics (ICFD) method is used, which enables the use of a turbulence model and the possibility of accurate wave modelling. Full article
(This article belongs to the Special Issue Feature Papers of Oceans 2024)
Show Figures

Figure 1

Previous Issue
Back to TopTop