Characterizing the Tropical Cyclones Activity over Arabian Sea (1982–2021)
Abstract
:1. Introduction
2. Data and Methods
3. Results and Discussion
3.1. Frequency and Intensity of TCs over the Arabian Sea
3.1.1. Monthly and Seasonally
Season | CS | SCS | VSCS | ESCS | SuCS |
---|---|---|---|---|---|
Winter | 0 | 0 | 0 | 0 | 0 |
Pre-monsoon | 8 | 4 | 2 | 5 | 1 |
Monsoon | 0 | 0 | 0 | 0 | 0 |
Post-monsoon | 8 | 6 | 6 | 4 | 1 |
3.1.2. Annual and Decadal
3.2. Genesis of TCs over the Arabian Sea
3.3. Influence of Environmental Factors on Tropical Cyclones Genesis and Intensity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Riehl, H. Climate and Weather in the Tropics; Academic Press: Cambridge, MA, USA, 1979. [Google Scholar]
- Tiwari, G.; Rameshan, A.; Kumar, P.; Javed, A.; Mishra, A.K. Understanding the post-monsoon tropical cyclone variability and trend over the Bay of Bengal during the satellite era. Q. J. R. Meteorol. Soc. 2021, 148, 1–14. [Google Scholar] [CrossRef]
- Resio, D.T.; Westerink, J.J. Modeling the physics of storm surges. Phys. Today 2008, 61, 33–38. [Google Scholar] [CrossRef]
- Rathore, L.S.; Mohapatra, M.; Geetha, B. Collaborative mechanism for tropical cyclone monitoring and prediction over north Indian ocean. In Tropical Cyclone Activity over the North Indian Ocean; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 3–27. [Google Scholar] [CrossRef]
- Cyclone, R.T. Report on Cyclonic Disturbances over the North Indian Ocean During 2013; RSMC: New Delhi, India, 2014; pp. 1–235. [Google Scholar]
- IMD. Extremely Severe Cyclonic Storm, ‘Megh’ over the Arabian Sea (05–10 November 2015): A Report; Cyclone Warning Division India Meteorological Department: New Delhi, India, 2015. [Google Scholar]
- Dube, S.K.; Jain, I.; Rao, A.D.; Murty, T.S. Storm surge modelling for the Bay of Bengal and Arabian Sea. Nat. Hazards 2009, 51, 3–27. [Google Scholar] [CrossRef]
- Gray, W.M. Global view of the origin of tropical disturbances and storms. Mon. Weather Rev. 1968, 96, 669–700. [Google Scholar] [CrossRef]
- Emanuel, K. 100 Years of Progress in Tropical Cyclone Research. Meteorol. Monogr. 2018, 59, 15.1–15.68. [Google Scholar] [CrossRef]
- Klotzbach, P.J.; Bowen, S.G.; Pielke, R.; Bell, M. Continental U.S. hurricane landfall frequency and associated damage: Observations and future risks. Bull. Am. Meteorol. Soc. 2018, 99, 1359–1376. [Google Scholar] [CrossRef]
- Benedetto, K.M.; Trepanier, J.C. Climatology and spatiotemporal analysis of north atlantic rapidly intensifying hurricanes (1851–2017). Atmosphere 2020, 11, 291. [Google Scholar] [CrossRef]
- Peduzzi, P.; Chatenoux, B.; Dao, H.; De Bono, A.; Herold, C.; Kossin, J.; Mouton, F.; Nordbeck, O. Global trends in tropical cyclone risk. Nat. Clim. Change 2012, 2, 289–294. [Google Scholar] [CrossRef]
- Mendelsohn, R.; Emanuel, K.; Chonabayashi, S.; Bakkensen, L. The impact of climate change on global tropical cyclone damage. Nat. Clim. Change 2012, 2, 205–209. [Google Scholar] [CrossRef]
- Rostami, M.; Zeitlin, V. Influence of condensation and latent heat release upon barotropic and baroclinic instabilities of vortices in a rotating shallow water f-plane model. Geophys. Astrophys. Fluid Dyn. 2017, 111, 1–31. [Google Scholar] [CrossRef]
- Kuo, H.-C.; Williams, R.T.; Chen, J.-H.; Chen, Y.-L. Topographic effects on barotropic vortex motion: No mean flow. J. Atmos. Sci. 2001, 58, 1310–1327. [Google Scholar] [CrossRef]
- Rostami, M.; Zeitlin, V. Evolution, propagation and interactions with topography of hurricane-like vortices in a moist-convective rotating shallow-water model. J. Fluid Mech. 2020, 902, A24. [Google Scholar] [CrossRef]
- Wahiduzzaman, M.; Oliver, E.C.J.; Wotherspoon, S.J.; Holbrook, N.J. A climatological model of North Indian Ocean tropical cyclone genesis, tracks and landfall. Clim. Dyn. 2016, 49, 2585–2603. [Google Scholar] [CrossRef]
- Wahiduzzaman, M.; Cheung, K.; Luo, J.-J.; Bhaskaran, P.K.; Tang, S.; Yuan, C. Impact assessment of Indian Ocean Dipole on the North Indian Ocean tropical cyclone prediction using a Statistical model. Clim. Dyn. 2021, 58, 1275–1292. [Google Scholar] [CrossRef]
- Singh, O.P.; Khan, T.M.A.; Rahman, S. Changes in the frequency of tropical cyclones over the North Indian Ocean. Meteorol. Atmos. Phys. 2000, 75, 11–20. [Google Scholar] [CrossRef]
- Galvin, J.F.P. The weather and climate of the tropics: Part 7—Tropical revolving storms. Weather 2008, 63, 327–333. [Google Scholar] [CrossRef]
- Mohanty, U.C.; Osuri, K.K.; Pattanayak, S.; Sinha, P. An observational perspective on tropical cyclone activity over Indian seas in a warming environment. Nat. Hazards 2011, 63, 1319–1335. [Google Scholar] [CrossRef]
- Pattanaik, D.R. Variability of oceanic and atmospheric conditions during active and inactive periods of storms over the Indian region. Int. J. Clim. 2005, 25, 1523–1530. [Google Scholar] [CrossRef]
- Li, Z.; Yu, W.; Li, K.; Wang, H.; Liu, Y.; Liu, L. Environmental conditions modulating tropical cyclone formation over the Bay of Bengal during the Pre-Monsoon Transition Period. J. Clim. 2019, 32, 4387–4394. [Google Scholar] [CrossRef]
- Mohapatra, M.; Kumar, V.V. Interannual variation of tropical cyclone energy metrics over North Indian Ocean. Clim. Dyn. 2016, 48, 1431–1445. [Google Scholar] [CrossRef]
- Galvin, J.F.P. The weather and climate of the tropics: Part 6—Monsoons. Weather 2008, 63, 129–137. [Google Scholar] [CrossRef]
- Evan, A.T.; Camargo, S.J. A climatology of Arabian Sea cyclonic storms. J. Clim. 2011, 24, 140–158. [Google Scholar] [CrossRef]
- Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 2005, 436, 686–688. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, S.B.; Landsea, C.W.; Mestas-Nuñez, A.M.; Gray, W.M. The recent increase in Atlantic hurricane activity: Causes and implications. Science 2001, 293, 474–479. [Google Scholar] [CrossRef]
- Webster, P.J.; Holland, G.J.; Curry, J.A.; Chang, H.-R. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 2005, 309, 1844–1846. [Google Scholar] [CrossRef]
- Elsner, J.B.; Kossin, J.P.; Jagger, T.H. The increasing intensity of the strongest tropical cyclones. Nature 2008, 455, 92–95. [Google Scholar] [CrossRef]
- Cao, X.; Wu, R.; Bi, M. Contributions of different time-scale variations to tropical cyclogenesis over the western North Pacific. J. Clim. 2018, 31, 3137–3153. [Google Scholar] [CrossRef]
- Cao, X.; Wu, R.; Bi, M.; Lan, X.; Dai, Y.; Zhao, J. Contribution of different time-scale variations to the tropical cyclogenesis environment over the northern tropical Atlantic and comparison with the western North Pacific. J. Clim. 2019, 32, 6645–6661. [Google Scholar] [CrossRef]
- Cao, X.; Wu, R.G.; Feng, J.; Zhang, X.P.; Dai, Y.F. Contrasting contributions of different time scale variations of environmental factors to tropical cyclogenesis over the eastern North Pacific. Atmos. Sci. Lett. 2021, 22, e1037. [Google Scholar] [CrossRef]
- Ng, E.K.W.; Chan, J.C.L. Interannual variations of tropical cyclone activity over the north Indian Ocean. Int. J. Clim. 2011, 32, 819–830. [Google Scholar] [CrossRef]
- Baburaj, P.P.; Abhilash, S.; Mohankumar, K.; Sahai, A.K. On the epochal variability in the frequency of cyclones during the pre-onset and onset phases of the monsoon over the North Indian Ocean. Adv. Atmos. Sci. 2020, 37, 634–651. [Google Scholar] [CrossRef]
- Balaji, M.; Chakraborty, A.; Mandal, M. Changes in tropical cyclone activity in north Indian Ocean during satellite era (1981–2014). Int. J. Clim. 2018, 38, 2819–2837. [Google Scholar] [CrossRef]
- Swapna, P.; Sreeraj, P.; Sandeep, N.; Jyoti, J.; Krishnan, R.; Prajeesh, A.G.; Ayantika, D.C.; Manmeet, S. Increasing frequency of extremely severe cyclonic storms in the North Indian Ocean by anthropogenic warming and southwest monsoon weakening. Geophys. Res. Lett. 2022, 49, e2021GL094650. [Google Scholar] [CrossRef]
- Jangir, B.; Swain, D.; Ghose, S. Influence of eddies and tropical cyclone heat potential on intensity changes of tropical cyclones in the North Indian Ocean. Adv. Space Res. 2020, 68, 773–786. [Google Scholar] [CrossRef]
- Mohapatra, M.; Bandyopadhyay, B.K.; Tyagi, A. Construction and quality of best tracks parameters for study of climate change impact on tropical cyclones over the North Indian Ocean during satellite era. In Monitoring and Prediction of Tropical Cyclones in the Indian Ocean and Climate Change; Springer: Berlin/Heidelberg, Germany, 2014; pp. 3–17. [Google Scholar]
- Simpkins, G. Arabian Sea cyclone changes. Nat. Rev. Earth Environ. 2021, 2, 588. [Google Scholar] [CrossRef]
- Deshpande, M.; Singh, V.K.; Ganadhi, M.K.; Roxy, M.K.; Emmanuel, R.; Kumar, U. Changing status of tropical cyclones over the north Indian Ocean. Clim. Dyn. 2021, 57, 3545–3567. [Google Scholar] [CrossRef]
- Deo, A.A.; Ganer, D.W.; Nair, G. Tropical cyclone activity in global warming scenario. Nat. Hazards 2011, 59, 771–786. [Google Scholar] [CrossRef]
- Rajeevan, M.; Srinivasan, J.; Kumar, K.N.; Gnanaseelan, C.; Ali, M.M. On the epochal variation of intensity of tropical cyclones in the Arabian Sea. Atmos. Sci. Lett. 2013, 14, 249–255. [Google Scholar] [CrossRef]
- Evan, A.T.; Kossin, J.P.; Chung, C.E.; Ramanathan, V. Arabian Sea tropical cyclones intensified by emissions of black carbon and other aerosols. Nature 2011, 479, 94–97. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.; Tan, Z.-M. The relationship between sea surface temperature and maximum intensification rate of tropical cyclones in the North Atlantic. J. Atmos. Sci. 2016, 73, 4979–4988. [Google Scholar] [CrossRef]
- Whitney, L.D.; Hobgood, J.S. The relationship between sea surface temperatures and maximum intensities of tropical cyclones in the eastern North Pacific Ocean. J. Clim. 1997, 10, 2921–2930. [Google Scholar] [CrossRef]
- Yu, J.; Lv, H.; Tan, S.; Wang, Y. Tropical Cyclone-Induced Sea Surface Temperature Responses in the Northern Indian Ocean. J. Mar. Sci. Eng. 2023, 11, 2196. [Google Scholar] [CrossRef]
- Kaplan, J.; DeMaria, M.; Knaff, J.A. A revised tropical cyclone rapid Intensification index for the Atlantic and eastern North Pacific basins. Weather Forecast. 2010, 25, 220–241. [Google Scholar] [CrossRef]
- Hendricks, E.A.; Peng, M.S.; Fu, B.; Li, T. Quantifying environmental control on tropical cyclone intensity change. Mon. Weather Rev. 2010, 138, 3243–3271. [Google Scholar] [CrossRef]
- Wu, L.; Su, H.; Fovell, R.G.; Wang, B.; Shen, J.T.; Kahn, B.H.; Hristova-Veleva, S.M.; Lambrigtsen, B.H.; Fetzer, E.J.; Jiang, J.H. Relationship of environmental relative humidity with North Atlantic tropical cyclone intensity and intensification rate. Geophys. Res. Lett. 2012, 39, L20809. [Google Scholar] [CrossRef]
- Park, M.-S.; Elsberry, R.L.; Harr, P.A. Vertical wind shear and ocean heat content as environmental modulators of western North Pacific tropical cyclone intensification and decay. Trop. Cyclone Res. Rev. 2012, 1, 448–457. [Google Scholar]
- Zeng, Z.; Wang, Y.; Wu, C.-C. Environmental dynamical control of tropical cyclone intensity—An observational study. Mon. Weather Rev. 2007, 135, 38–59. [Google Scholar] [CrossRef]
- Zeng, Z.; Chen, L.; Wang, Y. An observational study of environmental dynamical control of tropical cyclone intensity in the Atlantic. Mon. Weather Rev. 2008, 136, 3307–3322. [Google Scholar] [CrossRef]
- Mohapatra, M.; Bandyopadhyay, B.K.; Tyagi, A. Best track parameters of tropical cyclones over the North Indian Ocean: A review. Nat. Hazards 2011, 63, 1285–1317. [Google Scholar] [CrossRef]
- Raghavan, S. Observational aspects including weather radar for tropical cyclone monitoring. Mausam 2013, 64, 89–96. [Google Scholar] [CrossRef]
- Raghavan, S. Radar observations of tropical cyclones over the Indian Seas. Mausam 1997, 48, 169–188. [Google Scholar] [CrossRef]
- RSMC. Available online: https://rsmcnewdelhi.imd.gov.in/ (accessed on 22 May 2024).
- Bhatla, R.; Raj, R.; Singh, M. Climatology of recurvature of tropical cyclone over Bay of Bengal and Arabian Sea. Mausam 2018, 69, 437–442. [Google Scholar] [CrossRef]
- Monthly/Seasonal Composites: NOAA Physical Sciences Laboratory. Available online: https://psl.noaa.gov/cgi-bin/data/composites/printpage.pl (accessed on 22 May 2024).
- Rao, D.V.B.; Srinivas, D.; Satyanarayana, G.C. Trends in the genesis and landfall locations of tropical cyclones over the Bay of Bengal in the current global warming era. J. Earth Syst. Sci. 2019, 128, 194. [Google Scholar] [CrossRef]
- Mahala, B.K.; Nayak, B.K.; Mohanty, P.K. Impacts of ENSO and IOD on tropical cyclone activity in the Bay of Bengal. Nat. Hazards 2014, 75, 1105–1125. [Google Scholar] [CrossRef]
- Li, Z.; Yu, W.; Li, T.; Murty, V.S.N.; Tangang, F. Bimodal character of cyclone climatology in the Bay of Bengal modulated by monsoon seasonal cycle. J. Clim. 2013, 26, 1033–1046. [Google Scholar] [CrossRef]
- Wang, B.; Xu, S.; Wu, L. Intensified Arabian Sea tropical storms. Nature 2012, 489, E1–E2. [Google Scholar] [CrossRef]
- Murakami, H.; Vecchi, G.A.; Underwood, S. Increasing frequency of extremely severe cyclonic storms over the Arabian Sea. Nat. Clim. Change 2017, 7, 885–889. [Google Scholar] [CrossRef]
- Camargo, S.J.; Emanuel, K.A.; Sobel, A.H. Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Clim. 2007, 20, 4819–4834. [Google Scholar] [CrossRef]
- Singh, V.K.; Roxy, M. A review of ocean-atmosphere interactions during tropical cyclones in the north Indian Ocean. Earth-Sci. Rev. 2022, 226, 103967. [Google Scholar] [CrossRef]
- Gray, W.M. Hurricanes: Their formation, structure and likely role in the tropical circulation. In Meteorology over the Tropical Oceans; Royal Meteorological Society: Reading, UK, 1979; pp. 155–218. [Google Scholar]
- DeMaria, M. The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci. 1996, 53, 2076–2088. [Google Scholar] [CrossRef]
System | Wind Speed in km/h | Wind Speed in Knots (m/s) |
---|---|---|
Low-pressure area (L) | Less than 31 | Less than 17 (09) |
Depression (D) | 31–49 | 17–27 (9–14) |
Deep depression (DD) | 50–61 | 28–33 (15–17) |
Cyclonic storm (CS) | 62–88 | 33–47 (18–24) |
Severe cyclonic storm (SCS) | 89–118 | 48–63 (25–32) |
Very severe cyclonic storm (VSCS) Extreme severe cyclonic storm (ESCS) Super cyclonic storm (Sup. CS) | 119–165 166–220 221 or more | 64–89 (33–46) 90–119 (47–61) 120 (62) or more |
Decades (DEs) | Ds | CS | SCS | VSCS | ESCS | SUCS | Tot |
---|---|---|---|---|---|---|---|
1982–1991 (DE1) | 11 | 1 | 0 | 0 | 1 | 0 | 13 |
1992–2001 (DE2) | 5 | 6 | 4 | 2 | 3 | 0 | 20 |
2002–2011 (DE3) | 14 | 4 | 4 | 1 | 0 | 1 | 24 |
2012–2021 (DE4) | 12 | 5 | 2 | 4 | 6 | 1 | 30 |
Area | A1 | A2 | A3 | A4 |
---|---|---|---|---|
Latitude and longitude | 15°–25° N; 51°–62.9° E | 15°–25° N; 63°–75° E | 05°–14.9° N; 51°–62.9° E | 05°–14.9° N; 63°–78° E |
Number of occurrences | 1 | 32 | 13 | 41 |
Region | 1982–2001 | 1982–1991 | 1992–2001 | 2002–2021 | 2002–2011 | 2012–2021 |
---|---|---|---|---|---|---|
A1 | 0 | 0 | 0 | 1 | 0 | 1 |
A2 | 13 | 7 | 6 | 19 | 12 | 7 |
A3 | 1 | 0 | 1 | 12 | 4 | 8 |
A4 | 19 | 6 | 13 | 22 | 8 | 14 |
Total | 33 | 13 | 20 | 54 | 24 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Labban, A.H.; Hasanean, H.M.; Almahri, A.; Al-Sakkaf, A.S.; Hussein, M.A.A. Characterizing the Tropical Cyclones Activity over Arabian Sea (1982–2021). Oceans 2024, 5, 840-856. https://doi.org/10.3390/oceans5040048
Labban AH, Hasanean HM, Almahri A, Al-Sakkaf AS, Hussein MAA. Characterizing the Tropical Cyclones Activity over Arabian Sea (1982–2021). Oceans. 2024; 5(4):840-856. https://doi.org/10.3390/oceans5040048
Chicago/Turabian StyleLabban, Abdulhaleem H., H. M. Hasanean, Ali Almahri, Ali Salem Al-Sakkaf, and Mahmoud A. A. Hussein. 2024. "Characterizing the Tropical Cyclones Activity over Arabian Sea (1982–2021)" Oceans 5, no. 4: 840-856. https://doi.org/10.3390/oceans5040048
APA StyleLabban, A. H., Hasanean, H. M., Almahri, A., Al-Sakkaf, A. S., & Hussein, M. A. A. (2024). Characterizing the Tropical Cyclones Activity over Arabian Sea (1982–2021). Oceans, 5(4), 840-856. https://doi.org/10.3390/oceans5040048