Seagrass-Associated Biodiversity Influences Organic Carbon in a Temperate Meadow
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Seagrass and Sediment Assessment
2.3. Biodiversity Assessment
2.4. Carbon Core Analysis
2.5. Statistical Analysis
3. Results
3.1. Invertebrate Communities
3.2. Sediment Carbon
3.3. Seagrass Characteristics
3.4. Correlations
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Annelida | Crustacea |
---|---|
(Polychaeta) | (Arthropoda) |
Ampharete acutifrons | Urothoe marina |
Arenicola marina | |
Cirriformia tentaculata | |
Eteone picta | |
Euclymene lombricoides | |
Eumida sanguinea | |
Eurnereis longissma Johnston | |
Lumbrineris latreilli | |
Malacoceros vulgaris | |
Marphysa bellii | |
Mediomastus fragilis Rasmussen | |
Melinna palmata | |
Myriochele heeri | |
Neoamphitrite edwardsi | |
Nephtys caeca | |
Nicolea zostericola | |
Notomastus latericeus | |
Parexgone hebes | |
Scoloplos armiger | |
Terebellides stroemii | |
Thelepus setosus | |
Polychaete sp. | |
(Nemertea) | |
Emplectonema echinoderma | |
Tetrastemma coronatum |
References
- Pauly, D.; Christensen, V.; Dalsgaard, J.; Froese, R.; Torres, F. Fishing Down Marine Food Webs. Science 1998, 279, 860–863. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.B.M.; Brander, K.; Evans, S.; Holm, P.; Hiddink, J.G. Century-scale loss and change in the fishes and fisheries of a temperate marine ecosystem revealed by qualitative historical sources. Fish Fish. 2024, 25, 876–894. [Google Scholar] [CrossRef]
- Jones, B.L.H.; Cullen-Unsworth, L.C.; de la Torre-Castro, M.; Nordlund, L.M.; Unsworth, R.K.F.; Eklöf, J.S. Unintended consequences of sustainable development initiatives: Risks and opportunities in seagrass social-ecological systems. Ecol. Soc. 2022, 27, 10. [Google Scholar] [CrossRef]
- Steneck, R.S. Apex predators and trophic cascades in large marine ecosystems: Learning from serendipity. Proc. Natl. Acad. Sci. USA 2012, 109, 7953–7954. [Google Scholar] [CrossRef] [PubMed]
- Pinnegar, J.K.; Polunin, N.V.C.; Francour, P.; Badalamenti, F.; Chemello, R.; Harmelin-Vivien, M.L.; Hereu, B.; Milazzo, M.; Zabala, M.; D’Anna, G.; et al. Trophic cascades in benthic marine ecosystems: Lessons for fisheries and protected-area management. Environ. Conserv. 2000, 27, 179–200. [Google Scholar] [CrossRef]
- Gambi, M.C.; Giangrande, A.; Martinelli, M.; Chessa, L. Polychaetes of a Posidonia oceanica bed off Sardinia (Italy): Spatio-temporal distribution and feeding guild analysis. Sci. Mar. 1995, 59, 129–141. [Google Scholar]
- Milazzo, M.; Chemello, R.; Badalamenti, F.; Riggio, S. Molluscan assemblages associated with photophilic algae in the Marine Reserve of Ustica Island (Lower Tyrrhenian Sea, Italy). Ital. J. Zool. 2000, 67, 287–295. [Google Scholar] [CrossRef]
- Flach, E.C. The separate and combined effects of epibenthic predation and presence of macro-infauna on the recruitment success of bivalves in shallow soft-bottom areas on the Swedish west coast. J. Sea Res. 2003, 49, 59–67. [Google Scholar] [CrossRef]
- Tomassetti, P.; Porrello, S. Polychaetes as indicators of marine fish farm organic enrichment. Aquac. Int. 2005, 13, 109–128. [Google Scholar] [CrossRef]
- Kristensen, E. Impact of polychaetes (Nereis spp. and Arenicola marina) on carbon biogeochemistry in coastal marine sediments. Geochem. Trans. 2001, 2, 92. [Google Scholar] [CrossRef]
- Macreadie, P.I.; Anton, A.; Raven, J.A.; Beaumont, N.; Connolly, R.M.; Friess, D.A.; Kelleway, J.J.; Kennedy, H.; Kuwae, T.; Lavery, P.S.; et al. The future of Blue Carbon science. Nat. Commun. 2019, 10, 3998. [Google Scholar] [CrossRef] [PubMed]
- Fourqurean, J.W.; Duarte, C.M.; Kennedy, H.; Marba, N.; Holmer, M.; Mateo, M.A.; Apostolaki, E.T.; Kendrick, G.A.; Krause-Jensen, D.; McGlathery, K.J.; et al. Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 2012, 5, 505–509. [Google Scholar] [CrossRef]
- Brown, D.R.; Marotta, H.; Peixoto, R.B.; Enrich-Prast, A.; Barroso, G.C.; Soares, M.L.G.; Machado, W.; Pérez, A.; Smoak, J.M.; Sanders, L.M.; et al. Hypersaline tidal flats as important “blue carbon” systems: A case study from three ecosystems. Biogeosciences 2021, 18, 2527–2538. [Google Scholar] [CrossRef]
- Duarte de Paula Costa, M.; Macreadie, P.I. The Evolution of Blue Carbon Science. Wetlands 2022, 42, 109. [Google Scholar] [CrossRef]
- Ensign, S.H.; Noe, G.B. Tidal extension and sea-level rise: Recommendations for a research agenda. Front. Ecol. Environ. 2018, 16, 37–43. [Google Scholar] [CrossRef]
- Jackson, J.B.C. The future of the oceans past. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3765–3778. [Google Scholar] [CrossRef]
- Macreadie, P.I.; Baird, M.E.; Trevathan-Tackett, S.M.; Larkum, A.W.D.; Ralph, P.J. Quantifying and modelling the carbon sequestration capacity of seagrass meadows—A critical assessment. Mar. Pollut. Bull. 2014, 83, 430–439. [Google Scholar] [CrossRef]
- Kristensen, E.; Alongi, D.M. Control by fiddler crabs (Uca vocans) and plant roots (Avicennia marina) on carbon, iron, and sulfur biogeochemistry in mangrove sediment. Limnol. Oceanogr. 2006, 51, 1557–1571. [Google Scholar] [CrossRef]
- Wang, J.Q.; Zhang, X.D.; Jiang, L.F.; Bertness, M.D.; Fang, C.M.; Chen, J.K.; Hara, T.; Li, B. Bioturbation of Burrowing Crabs Promotes Sediment Turnover and Carbon and Nitrogen Movements in an Estuarine Salt Marsh. Ecosystems 2010, 13, 586–599. [Google Scholar] [CrossRef]
- Ennas, C.; Pasquini, V.; Abyaba, H.; Addis, P.; Sarà, G.; Pusceddu, A. Sea cucumbers bioturbation potential outcomes on marine benthic trophic status under different temperature regimes. Sci. Rep. 2023, 13, 11558. [Google Scholar] [CrossRef]
- Kristensen, E.; Delefosse, M.; Quintana, C.O.; Flindt, M.R.; Valdemarsen, T. Influence of benthic macrofauna community shifts on ecosystem functioning in shallow estuaries. Front. Mar. Sci. 2014, 1, 41. [Google Scholar] [CrossRef]
- Meysman, F.J.R.; Middelburg, J.J.; Heip, C.H.R. Bioturbation: A fresh look at Darwin’s last idea. Trends Ecol. Evol. 2006, 21, 688–695. [Google Scholar] [CrossRef] [PubMed]
- Edward, C.T.; Mark, S.F. Bioturbation as a potential mechanism influencing spatial heterogeneity of North Carolina seagrass beds. Mar. Ecol. Prog. Ser. 1998, 169, 123–132. [Google Scholar]
- Rodil, I.F.; Lohrer, A.M.; Attard, K.M.; Hewitt, J.E.; Thrush, S.F.; Norkko, A. Macrofauna communities across a seascape of seagrass meadows: Environmental drivers, biodiversity patterns and conservation implications. Biodivers. Conserv. 2021, 30, 3023–3043. [Google Scholar] [CrossRef]
- Fontaine, S.; Mariotti, A.; Abbadie, L. The priming effect of organic matter: A question of microbial competition? Soil Biol. Biochem. 2003, 35, 837–843. [Google Scholar] [CrossRef]
- Alongi, D.M.; McKinnon, A.D. The cycling and fate of terrestrially-derived sediments and nutrients in the coastal zone of the Great Barrier Reef shelf. Mar. Pollut. Bull. 2005, 51, 239–252. [Google Scholar] [CrossRef]
- Bugnot, A.B.; Dafforn, K.A.; Coleman, R.A.; Ramsdale, M.; Gibbeson, J.T.; Erickson, K.; Vila-Concejo, A.; Figueira, W.F.; Gribben, P.E. Linking habitat interactions and biodiversity within seascapes. Ecosphere 2022, 13, e4021. [Google Scholar] [CrossRef]
- Thomson, A.C.G. The Role of Bioturbators in Seagrass Blue Carbon Dynamics. Ph.D. Thesis, University of Technology Sydney, Ultimo, Australia, 2017. [Google Scholar]
- Schmiedl, G.; de Bovée, F.; Buscail, R.; Charrière, B.; Hemleben, C.; Medernach, L.; Picon, P. Trophic control of benthic foraminiferal abundance and microhabitat in the bathyal Gulf of Lions, western Mediterranean Sea. Mar. Micropaleontol. 2000, 40, 167–188. [Google Scholar] [CrossRef]
- Tarquinio, F.; Hyndes, G.A.; Laverock, B.; Koenders, A.; Säwström, C. The seagrass holobiont: Understanding seagrass-bacteria interactions and their role in seagrass ecosystem functioning. FEMS Microbiol. Lett. 2019, 366, fnz057. [Google Scholar] [CrossRef]
- Mills, V.S.; Berkenbusch, K. Seagrass (Zostera muelleri) patch size and spatial location influence infaunal macroinvertebrate assemblages. Estuar. Coast. Shelf Sci. 2009, 81, 123–129. [Google Scholar] [CrossRef]
- McCloskey, R.M.; Unsworth, R.K.F. Decreasing seagrass density negatively influences associated fauna. PeerJ 2015, 3, e1053. [Google Scholar] [CrossRef] [PubMed]
- Arnull, J.; Wilson, A.M.W.; Brayne, K.; Dexter, K.; Donah, A.G.; Gough, C.L.A.; Klückow, T.; Ngwenya, B.; Tudhope, A. Ecological co-benefits from sea cucumber farming: Holothuria scabra increases growth rate of seagrass. Aquac. Environ. Interact. 2021, 13, 301–310. [Google Scholar] [CrossRef]
- Atwood, T.B.; Connolly, R.M.; Ritchie, E.G.; Lovelock, C.E.; Heithaus, M.R.; Hays, G.C.; Fourqurean, J.W.; Macreadie, P.I. Predators help protect carbon stocks in blue carbon ecosystems. Nat. Clim. Chang. 2015, 5, 1038–1045. [Google Scholar] [CrossRef]
- Thomson, A.C.G.; Trevathan-Tackett, S.M.; Maher, D.T.; Ralph, P.J.; Macreadie, P.I. Bioturbator-stimulated loss of seagrass sediment carbon stocks. Limnol. Oceanogr. 2019, 64, 342–356. [Google Scholar] [CrossRef]
- Machado-Silva, F.; Neres-Lima, V.; Oliveira, A.F.; Moulton, T.P. Forest cover controls the nitrogen and carbon stable isotopes of rivers. Sci. Total Environ. 2022, 817, 152784. [Google Scholar] [CrossRef]
- Boyes, S.; Hemingway, K.; Allen, J.H. Intertidal Monitoring of Zostera Marina in Pen Llyn a’r Sarnau SAC in 2004/2005; Countryside Council for Wales: Bangor, UK, 2008.
- Egerton, J. Management of the Seagrass Bed at Porth Dinllaen. Initial Investigation into the Use of Alternative Mooring Systems; Report for Gwynedd Council; Gwynedd Council: Caernarfon, UK, 2011. [Google Scholar]
- Unsworth, R.K.F.; Bull, J.C.; Bertelli, C.M. Options for Long-Term Seagrass Monitoring at Porthdinllaen, Wales; Report Produced by Swansea University on Behalf of Gwynedd Council; Swansea University: Swansea, UK, 2014. [Google Scholar]
- Jones, B.L.; Unsworth, R.K.F. The perilous state of seagrass in the British Isles. R. Soc. Open Sci. 2016, 3, 150596. [Google Scholar] [CrossRef]
- Gerwing, T.; Allen Gerwing, A.; Drolet, D.; Hamilton, D.; Barbeau, M.A. Comparing two methods of measuring the depth to the redox potential discontinuity in intertidal mudflat sediments. Mar. Ecol. Prog. Ser. 2013, 487, 7–13. [Google Scholar] [CrossRef]
- Valdemarsen, T.; Canal-Vergés, P.; Kristensen, E.; Holmer, M.; Kristiansen, M.D.; Flindt, M.R. Vulnerability of Zostera marina seedlings to physical stress. Mar. Ecol. Prog. Ser. 2010, 418, 119–130. [Google Scholar] [CrossRef]
- Hayward, P.J.; Ryland, J.S. Handbook of the Marine Fauna of North-West Europe; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Howard, J.; Hoyt, S.; Isensee, K.; Pidgeon, E.; Telszewski, M. Coastal Blue Carbon: Methods for Assessing Carbon Stocks and Emissions Factors in Mangroves, Tidal Salt Marshes, and Seagrass Meadows; Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature: Arlington, VA, USA, 2014. [Google Scholar]
- Potouroglou, M.; Whitlock, D.; Milatovic, L.; MacKinnon, G.; Kennedy, H.; Diele, K.; Huxham, M. The sediment carbon stocks of intertidal seagrass meadows in Scotland. Estuar. Coast. Shelf Sci. 2021, 258, 107442. [Google Scholar] [CrossRef]
- Lavery, P.S.; Mateo, M.-Á.; Serrano, O.; Rozaimi, M. Variability in the Carbon Storage of Seagrass Habitats and Its Implications for Global Estimates of Blue Carbon Ecosystem Service. PLoS ONE 2013, 8, e73748. [Google Scholar] [CrossRef]
- Röhr, M.E.; Holmer, M.; Baum, J.K.; Björk, M.; Boyer, K.; Chin, D.; Chalifour, L.; Cimon, S.; Cusson, M.; Dahl, M.; et al. Blue Carbon Storage Capacity of Temperate Eelgrass (Zostera marina) Meadows. Glob. Biogeochem. Cycles 2018, 32, 1457–1475. [Google Scholar] [CrossRef]
- Clarke, K.R.; Warwick, R.M. Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation; Natural Environmental Research Council, Plymouth Marine Laboratory: Plymouth, UK, 1994. [Google Scholar]
- Clarke, K.R. Non-parametric multivariate analysis of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Carrascal, L.M.; Galvan, I.; Gordo, O. Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 2009, 118, 681–690. [Google Scholar] [CrossRef]
- Haapkyla, J.; Unsworth, R.K.F.; Flavell, M.; Bourne, D.G.; Schaffelke, B.; Willis, B.L. Seasonal Rainfall and Runoff Promote Coral Disease on an Inshore Reef. PLoS ONE 2011, 6, e16893. [Google Scholar] [CrossRef]
- Queirós, A.M.; Birchenough, S.N.R.; Bremner, J.; Godbold, J.A.; Parker, R.E.; Romero-Ramirez, A.; Reiss, H.; Solan, M.; Somerfield, P.J.; Van Colen, C.; et al. A bioturbation classification of European marine infaunal invertebrates. Ecol. Evol. 2013, 3, 3958–3985. [Google Scholar] [CrossRef]
- Ren, L.; Jensen, K.; Porada, P.; Mueller, P. Biota-mediated carbon cycling—A synthesis of biotic-interaction controls on blue carbon. Ecol. Lett. 2022, 25, 521–540. [Google Scholar] [CrossRef]
- Jensen, S.I.; Kühl, M.; Priemé, A. Different bacterial communities associated with the roots and bulk sediment of the seagrass Zostera marina. FEMS Microbiol. Ecol. 2007, 62, 108–117. [Google Scholar] [CrossRef]
- Mayer, L.M. Surface area control of organic carbon accumulation in continental shelf sediments. Geochim. Cosmochim. Acta 1994, 58, 1271–1284. [Google Scholar] [CrossRef]
- Magill, C.R.; Ausín, B.; Wenk, P.; McIntyre, C.; Skinner, L.; Martínez-García, A.; Hodell, D.A.; Haug, G.H.; Kenney, W.; Eglinton, T.I. Transient hydrodynamic effects influence organic carbon signatures in marine sediments. Nat. Commun. 2018, 9, 4690. [Google Scholar] [CrossRef]
- Bertelli, C.M.; Bull, J.C.; Cullen-Unsworth, L.C.; Unsworth, R.K.F. Unravelling the Spatial and Temporal Plasticity of Eelgrass Meadows. Front. Plant Sci. 2021, 12, 664523. [Google Scholar] [CrossRef]
- Unsworth, R.K.F.; Jones, B.L.H.; Coals, L.; Furness, E.; Inman, I.; Rees, S.C.; Evans, A.J. Overcoming ecological feedbacks in seagrass restoration. Restor. Ecol. 2024, 32, e14101. [Google Scholar] [CrossRef]
- Kaldy, J. Influence of light, temperature and salinity on dissolved organic carbon exudation rates in Zostera marina L. Aquat. Biosyst. 2012, 8, 19. [Google Scholar] [CrossRef] [PubMed]
- Fauchald, K.; Jumars, P.A. The diet of worms: A study of polychaete feeding guilds. Oceanogr. Mar. Biol. Annu. Rev. 1979, 17, 193–284. [Google Scholar]
- Como, S.; Magni, P.; Baroli, M.; Casu, D.; De Falco, G.; Floris, A. Comparative analysis of macrofaunal species richness and composition in Posidonia oceanica, Cymodocea nodosa and leaf litter beds. Mar. Biol. 2008, 153, 1087–1101. [Google Scholar] [CrossRef]
- DeWitt, T.H. The Effects of Bioturbation and Bioirrigation on Seagrasses. Seagrasses and Protective Criteria: A Review and Assessment of Research Status. In Seagrasses and Protective Criteria: A Review and Assessment of Research Status; Nelson, W.G., Ed.; Office of Research and Development, National Health and Environmental Effects Research Laboratory: Newport, OR, USA, 2009; Volume Report Number: EPA/600/R-09/050Affiliation. [Google Scholar]
- Bauer, P.; Uwakweh, O.N.C.; Genin, J.M.R. Cems study of the carbon distribution in austenite. Hyperfine Interact. 1988, 41, 555–558. [Google Scholar] [CrossRef]
- Beam, J.P.; Michaud, A.B.; Johnston, D.T.; Girguis, P.R.; Emerson, D. Impacts of bioturbation on iron biogeochemistry and microbial communities in coastal sediment mesocosms under varying degrees of hypoxia. Estuar. Coast. Shelf Sci. 2022, 276, 108032. [Google Scholar] [CrossRef]
- Valdemarsen, T.; Wendelboe, K.; Egelund, J.T.; Kristensen, E.; Flindt, M.R. Burial of seeds and seedlings by the lugworm Arenicola marina hampers eelgrass (Zostera marina) recovery. J. Exp. Mar. Biol. Ecol. 2011, 410, 45–52. [Google Scholar] [CrossRef]
- Seitz, R.D.; Ewers Lewis, C.J. Loss of seagrass results in changes to benthic infaunal community structure and decreased secondary production. Bull. Mar. Sci. 2018, 94, 1273–1292. [Google Scholar] [CrossRef]
- Paul, J.S.; Supaporn, Y.; Chittima, A. Relationships between seagrass biodiversity and infaunal communities: Implications for studies of biodiversity effects. Mar. Ecol. Prog. Ser. 2002, 237, 97–109. [Google Scholar]
- van de Velde, S.; Meysman, F.J.R. The Influence of Bioturbation on Iron and Sulphur Cycling in Marine Sediments: A Model Analysis. Aquat. Geochem. 2016, 22, 469–504. [Google Scholar] [CrossRef]
- Sokratis, P.; Trine, G.; Raymond, P.C.; Maria, T.-L.; Erik, K. Sediment properties and bacterial community in burrows of the ghost shrimp Pestarella tyrrhena (Decapoda: Thalassinidea). Aquat. Microb. Ecol. 2005, 38, 181–190. [Google Scholar]
- Bianchi, T.S. The role of terrestrially derived organic carbon in the coastal ocean: A changing paradigm and the priming effect. Proc. Natl. Acad. Sci. USA 2011, 108, 19473–19481. [Google Scholar] [CrossRef] [PubMed]
- Rodil, I.F.; Lohrer, A.M.; Attard, K.M.; Thrush, S.F.; Norkko, A. Positive contribution of macrofaunal biodiversity to secondary production and seagrass carbon metabolism. Ecology 2022, 103, e3648. [Google Scholar] [CrossRef] [PubMed]
- Hedman, J.E.; Bradshaw, C.; Thorsson, M.H.; Gilek, M.; Gunnarsson, J.S. Fate of contaminants in Baltic Sea sediments: Role of bioturbation and settling organic matter. Mar. Ecol. Prog. Ser. 2008, 356, 25–38. [Google Scholar] [CrossRef]
- van der Geest, M.; van der Heide, T.; Holmer, M.; de Wit, R. First Field-Based Evidence That the Seagrass-Lucinid Mutualism Can Mitigate Sulfide Stress in Seagrasses. Front. Mar. Sci. 2020, 7, 11. [Google Scholar] [CrossRef]
- Hasler-Sheetal, H.; Holmer, M. Sulfide Intrusion and Detoxification in the Seagrass Zostera marina. PLoS ONE 2015, 10, e0129136. [Google Scholar] [CrossRef]
- Thomson, A.C.G.; Kristensen, E.; Valdemarsen, T.; Quintana, C.O. Short-term fate of seagrass and macroalgal detritus in Arenicola marina bioturbated sediments. Mar. Ecol. Prog. Ser. 2020, 639, 21–35. [Google Scholar] [CrossRef]
- Baum, J.K.; Worm, B. Cascading top-down effects of changing oceanic predator abundances. J. Anim. Ecol. 2009, 78, 699–714. [Google Scholar] [CrossRef]
- Baden, S.; Emanuelsson, A.; Pihl, L.; Svensson, C.J.; Aberg, P. Shift in seagrass food web structure over decades is linked to overfishing. Mar. Ecol. Prog. Ser. 2012, 451, 61–73. [Google Scholar] [CrossRef]
- Tangelder, M.; Ysebaert, T.; Wijsman, J.; Janssen, J.; Mulder, I.; Nolte, A.; Stolte, W.; van Rooijen, N.; van den Bogaart, L. Ecologisch onderzoek Getij Grevelingen; Wageningen University & Research Rapport: Wageningen, The Netherlands, 2019; C089/19. [Google Scholar]
- Gloeckner, D.R.; Luczkovich, J.J. Experimental assessment of trophic impacts from a network model of a seagrass ecosystem: Direct and indirect effects of gulf flounder, spot and pinfish on benthic polychaetes. J. Exp. Mar. Biol. Ecol. 2008, 357, 109–120. [Google Scholar] [CrossRef]
Species | Reworking Traits (Ri) | Motility Traits (Mi) | Sediment Reworking Types (Fti) |
---|---|---|---|
Neoamphitrite edwardsi * | Upward and downward conveyors | Fixed Tubes | DC |
Ampharete acutifrons | Upward and downward conveyors | Limited Movement | UC/DC |
Notomastus latericeus | Upward and downward conveyors | Limited Movement | UC |
Terebellides stroemii | Upward and downward conveyors | Fixed Tubes | DC |
Malacoceros vulgaris ** | Upward and downward conveyors | Limited Movement | UC/DC |
R2 | R2 | F | P | Coeff | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Carbon | Comp 1 | Comp 2 | X variance | Algae (%) | Shoot density | Ampharete acutifrons | Notomastus latericeus | Neoamphitrite edwardsi | ||
Corg in Top 10 cm | 0.71 | 0.72 | 17.38 | 0.004 | 0.50 | −0.55 | 0.22 | −0.36 | ||
Corg in 10 to 20 cm | 0.47 | 0.53 | 6.25 | 0.041 | 0.47 | 0.35 | −0.4 | 0.3 | ||
Corg in Top 20 | 0.69 | 0.74 | 14.16 | 0.007 | −0.29 | −0.49 | 0.77 | −0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Neill, L.; Walter, B.; Unsworth, R.K.F. Seagrass-Associated Biodiversity Influences Organic Carbon in a Temperate Meadow. Oceans 2024, 5, 874-888. https://doi.org/10.3390/oceans5040050
O’Neill L, Walter B, Unsworth RKF. Seagrass-Associated Biodiversity Influences Organic Carbon in a Temperate Meadow. Oceans. 2024; 5(4):874-888. https://doi.org/10.3390/oceans5040050
Chicago/Turabian StyleO’Neill, Lowri, Bettina Walter, and Richard K. F. Unsworth. 2024. "Seagrass-Associated Biodiversity Influences Organic Carbon in a Temperate Meadow" Oceans 5, no. 4: 874-888. https://doi.org/10.3390/oceans5040050
APA StyleO’Neill, L., Walter, B., & Unsworth, R. K. F. (2024). Seagrass-Associated Biodiversity Influences Organic Carbon in a Temperate Meadow. Oceans, 5(4), 874-888. https://doi.org/10.3390/oceans5040050