Memory-Efficient AI Algorithm for Infant Sleeping Death Syndrome Detection in Smart Buildings
Abstract
:1. Introduction
2. AI Algorithm
2.1. Proposed AI Algorithm—Convolutional Neural Networks (CNNs)
2.2. Post–Training Weight Quantization
3. Experiments and Discussion
3.1. Datasets Generation
3.2. Experimental Environment and Setup
3.3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Huang, Q. Review: Energy-Efficient Smart Buildings Driven by Emerging Sensing, Communication, and Machine Learning Technologies. Eng. Lett. 2018, 26, 320–332. [Google Scholar]
- Huang, Q.; Rodrigeuz, K.; Whestone, N.; Habel, S. Rapid Internet of Things (IoT) Prototype for Accurate People Counting Towards Energy Efficient Buildings. J. Inf. Technol. Constr. 2019, 24, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Hao, K. Development of CNN-based visual recognition air conditioner for smart buildings. J. Inf. Technol. Constr. 2020, 25, 361–373. [Google Scholar] [CrossRef]
- Huang, Q.; Lu, C.; Chen, K. Smart Building Applications and Information System Hardware Co-Design. In Big Data Analytics for Sensor-Network Collected Intelligence; Elsevier BV: London, UK, 2017; pp. 225–240. [Google Scholar]
- Gilbert, R.; Salanti, G.; Harden, M.; See, S. Infant sleeping position and the sudden infant death syndrome: Systematic review of observational studies and historical review of recommendations from 1940 to 2002. Int. J. Epidemiol. 2005, 34, 874–887. [Google Scholar] [CrossRef] [PubMed]
- Alfleesy, O. Right-Side Sleeping Position Prevents Sudden Infant Death Syndrome a Literature Review. J. Forensic. Sci. Criminol. 2016, 4, 204. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, T.; Li, G.; Li, T.; Inoue, Y. Wearable Sensor Systems for Infants. Sensors 2015, 15, 3721–3749. [Google Scholar] [CrossRef] [PubMed]
- Bonafide, C.; Localio, A.; Ferro, D.; Orenstein, D.; Lavanchy, C.; Foglia, E. Accuracy of Pulse Oximetry-Based Home Baby Monitors. J. Am. Med Assoc. 2018, 320, 717–719. [Google Scholar] [CrossRef]
- Hasan, M.; Negulescu, I. Wearable Technology for Baby Monitoring: A Review. J. Text. Eng. Fash. Technol. 2020, 6, 112–120. [Google Scholar] [CrossRef]
- Boughorbel, S.; Bruekers, F.; Breebaart, J. Baby-Posture Classification from Pressure-Sensor Data. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 556–559. [Google Scholar]
- Kim, Y.M.; Son, Y.; Kim, W.; Jin, B.; Yun, M.H. Classification of Children’s Sitting Postures Using Machine Learning Algorithms. Appl. Sci. 2018, 8, 1280. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Wang, X.; Su, M.; Lu, K. A Method to Recognize Sleeping Position Using an CNN Model Based on Human Body Pressure Image. In Proceedings of the 2019 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, China, 12–14 July 2019; pp. 219–224. [Google Scholar] [CrossRef]
- Malik, A.; Ehsan, Z. Media Review: The Owlet Smart Sock—A “must have” for the baby registry? J. Clin. Sleep Med. 2020, 16, 839–840. [Google Scholar] [CrossRef]
- Moon, R.Y.; Syndrome, T.F.O.S.I.D. SIDS and Other Sleep-Related Infant Deaths: Evidence Base for 2016 Updated Recommendations for a Safe Infant Sleeping Environment. Pediatrics 2016, 138, e20162940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Pozuelo, I.; Zhai, B.; Palotti, J.; Mall, R.; Aupetit, M.; Garcia-Gomez, J.M.; Taheri, S.; Guan, Y.; Fernandez-Luque, L. The future of sleep health: A data-driven revolution in sleep science and medicine. NPJ Digit. Med. 2020, 3, 42. [Google Scholar] [CrossRef]
- Grimm, T.; Martinez, M.; Benz, A.; Stiefelhagen, R. Sleep position classification from a depth camera using Bed Aligned Maps. In Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016; pp. 319–324. [Google Scholar] [CrossRef]
- Huang, Q.; Hao, K. The Development of Artificial Intelligence (AI) Algorithms to Avoid Potential Baby Sleep Hazards in Smart Buildings. ASCE Constr. Res. Congr. 2020, 278–287. [Google Scholar] [CrossRef]
- Shadman, R. The Development of Neural Network Architectures for Image Classification to Prevent Sudden Infant Death in Smart Buildings. Master’s Thesis, Southern Illinois University Carbondale, Carbondale, IL, USA, 2021. [Google Scholar]
- Khan, T. An Intelligent Baby Monitor with Automatic Sleeping Posture Detection and Notification. Artif. Intell. (AI) 2021, 2, 290–306. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Maaten, L.; Weinberger, K. Densely Connected Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Tang, K.; Kumar, A.; Nadeem, M.; Maaz, I. CNN-Based Smart Sleep Posture Recognition System. IoT 2021, 2, 119–139. [Google Scholar] [CrossRef]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- Zhou, Z.; Chen, X.; Li, E.; Zeng, L.; Luo, K.; Zhang, J. Edge Intelligence: Paving the Last Mile of Artificial Intelligence with Edge Computing. Proc. IEEE 2019, 107, 1738–1762. [Google Scholar] [CrossRef] [Green Version]
- Deng, S.; Zhao, H.; Fang, W.; Yin, J.; Dustdar, S.; Zomaya, A.Y. Edge Intelligence: The Confluence of Edge Computing and Artificial Intelligence. IEEE Internet Things J. 2020, 7, 7457–7469. [Google Scholar] [CrossRef] [Green Version]
- Nasr, M.; Islam, M.; Shehata, S.; Karray, F.; Quintana, Y. Smart Healthcare in the Age of AI: Recent Advances, Challenges, and Future Prospects. IEEE Access 2021, 9, 145248–145270. [Google Scholar] [CrossRef]
- Althnian, A.; AlSaeed, D.; Al-Baity, H.; Samha, A.; Bin Dris, A.; AlZakari, N.; Elwafa, A.A.; Kurdi, H. Impact of Dataset Size on Classification Performance: An Empirical Evaluation in the Medical Domain. Appl. Sci. 2021, 11, 796. [Google Scholar] [CrossRef]
- Gong, Z.; Zhong, P.; Hu, W. Diversity in Machine Learning. IEEE Access 2019, 7, 64323–64350. [Google Scholar] [CrossRef]
- Fang, W.; Ding, L.; Zhong, B.; Love, P.E.; Luo, H. Automated detection of workers and heavy equipment on construction sites: A convolutional neural network approach. Adv. Eng. Inform. 2018, 37, 139–149. [Google Scholar] [CrossRef]
- Wu, J.; Cai, N.; Chen, W.; Wang, H.; Wang, G. Automatic detection of hardhats worn by construction personnel: A deep learning approach and benchmark dataset. Autom. Constr. 2019, 106, 102894. [Google Scholar] [CrossRef]
- Airaksinen, M.; Räsänen, O.; Ilén, E.; Häyrinen, T.; Kivi, A.; Marchi, V.; Gallen, A.; Blom, S.; Varhe, A.; Kaartinen, N.; et al. Automatic Posture and Movement Tracking of Infants with Wearable Movement Sensors. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Bjorck, J.; Gomes, C.; Selman, B.; Weinberger, K. Understanding Batch Normalization. In Proceedings of the International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018; pp. 7705–7716. [Google Scholar]
- Yang, G.; Pennington, J.; Rao, V.; Dickstein, J.; Schoenholz, S. A Mean Field Theory of Batch Normalization. In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019; pp. 1–15. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
- Banner, R.; Hubara, I.; Hoffer, E.; Soudry, D. Scalable Methods for 8-bit Training of Neural Networks. In Proceedings of the International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 2018, 3–8 December; pp. 5151–5159.
- Wu, S.; Li, G.; Chen, F.; Shi, L. Training and Inference with Integers in Deep Neural Networks. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018; pp. 1–14. [Google Scholar]
- Zhu, X.; Vondrick, C.; Fowlkes, C.C.; Ramanan, D. Do We Need More Training Data? Int. J. Comput. Vis. 2016, 119, 76–92. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Lu, C.; Hao, C.; Chen, D.; Guo, D. Improving the Generalization Ability of Deep Neural Networks for Cross-Domain Visual Recognition. IEEE Trans. Cogn. Dev. Syst. 2021, 13, 607–620. [Google Scholar] [CrossRef]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A System for Large-Scale Machine Learning. In Proceedings of the ACM USENIX Conference on Operating Systems Design and Implementation, Savannah, GA, USA, 2–4 November 2016; pp. 265–283. [Google Scholar]
- Baldi, P. Gradient descent learning algorithm overview: A general dynamical systems perspective. IEEE Trans. Neural Netw. 1995, 6, 182–195. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Senior, A.; Heigold, G.; Ranzato, M.; Yang, K. An empirical study of learning rates in deep neural networks for speech recognition. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 6724–6728. [Google Scholar] [CrossRef] [Green Version]
Existing Work | Year | AI Algorithm | Accuracy | Disadvantages |
---|---|---|---|---|
[16] | 2016 | CNN with 3 convolution and 2 dense layers | 94% |
|
[17] | 2020 | CNN with 4 convolution and 2 dense layers | 88% |
|
[18] | 2021 | ResNet with 16 convolution and 3 dense layers | 89% |
|
[19] | 2021 | DenseNet-121 | N/A |
|
[21] | 2021 | Inception-V3 | 90% |
|
This work | 2021 | CNN with post-training weight quantization | 90% |
|
Layer Name | Layer Type | Number of Filters | Output Shape | Number of Parameters |
---|---|---|---|---|
Conv2d | Conv2D | 16 | (256, 256, 16) | 448 |
Max_pooling2d | MaxPooling2D | (128, 128, 16) | 0 | |
Conv2d_1 | Conv2D | 32 | (128, 128, 32) | 4640 |
Max_pooling2d_1 | MaxPooling2D | (64, 64, 32) | 0 | |
Batch_normalization | Batch Normalization | (64, 64, 32) | 128 | |
Conv2d_2 | Conv2D | 64 | (64, 64, 64) | 18,496 |
Max_pooling2d_2 | MaxPooling2D | (32, 32, 64) | 0 | |
Conv2d_3 | Conv2D | 64 | (32, 32, 64) | 36,928 |
Max_pooling2d_3 | Maxpooling2D | (16, 16, 64) | 0 | |
Batch_normalization | Batch Normalization | (16, 16, 64) | 256 | |
Flatten | Flatten | 16,384 | 0 | |
Dense | Dense | 384 | 6,291,840 | |
Dropout | Dropout | 384 | 0 | |
Dense_1 | Dense | 128 | 49,280 | |
Dense_2 | Dense | 1 | 129 |
Dataset | Subset | Number of Samples | Percentage |
---|---|---|---|
Daytime dataset (5120 daytime images) | Training Set | 3584 | 70% |
Validation Set | 1024 | 20% | |
Testing Set | 512 | 10% | |
Night-vision dataset (5120 night-vision images) | Training Set | 3584 | 70% |
Validation Set | 1024 | 20% | |
Testing Set | 512 | 10% | |
Mixed dataset (10,240 daytime and night vision images) | Training Set | 7168 | 70% |
Validation Set | 2048 | 20% | |
Testing Set | 1024 | 10% |
Existing Work | Dataset | Weight Quantization | Memory Footprint | Test Accuracy |
---|---|---|---|---|
[17] | 4250 daytime images | No | 275 MB | 88% |
[18] | 4250 daytime images | No | 174 MB | 89% |
[19] | Baby doll pictures instead of real baby pictures | No | 58.2 MB | N/A |
[21] | 1200 non-baby sleep images | No | 175.7 MB | 90.2% |
This work | Daytime dataset (5120 images) | No | 51.3 MB | 90.8% |
Yes | 6.4 MB | 91.6% |
Dataset | Weight Quantization | Memory Footprint | Test Accuracy | Comments | |
---|---|---|---|---|---|
Mixed dataset (10,240 images) | [17] | No | 275 MB | 89.5% | Compared with these existing AI algorithms, this work reduces memory footprint by at least 89%, while maintaining similar classification accuracy. |
[18] | No | 174 MB | 89.3% | ||
[19] | No | 58.2 MB | 91.0% | ||
[21] | No | 175.7 MB | 91.1% | ||
This work | No | 51.3 MB | 89.9% | ||
Yes | 6.4 MB | 89.7% |
[17] | Negative (predicted) | Positive (predicted) |
Negative (actual) | TN = 0.93 | FP = 0.07 |
Positive (actual) | FN = 0.13 | TP = 0.87 |
[18] | Negative (predicted) | Positive (predicted) |
Negative (actual) | TN = 0.93 | FP = 0.07 |
Positive (actual) | FN = 0.15 | TP = 0.85 |
[19] | Negative (predicted) | Positive (predicted) |
Negative (actual) | TN = 0.95 | FP = 0.05 |
Positive (actual) | FN = 0.14 | TP = 0.86 |
[21] | Negative (predicted) | Positive (predicted) |
Negative (actual) | TN = 0.94 | FP = 0.06 |
Positive (actual) | FN = 0.14 | TP = 0.86 |
This work | Negative (predicted) | Positive (predicted) |
Negative (actual) | TN = 0.92 | FP = 0.08 |
Positive (actual) | FN = 0.11 | TP = 0.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Q.; Hsieh, C.; Hsieh, J.; Liu, C. Memory-Efficient AI Algorithm for Infant Sleeping Death Syndrome Detection in Smart Buildings. AI 2021, 2, 705-719. https://doi.org/10.3390/ai2040042
Huang Q, Hsieh C, Hsieh J, Liu C. Memory-Efficient AI Algorithm for Infant Sleeping Death Syndrome Detection in Smart Buildings. AI. 2021; 2(4):705-719. https://doi.org/10.3390/ai2040042
Chicago/Turabian StyleHuang, Qian, Chenghung Hsieh, Jiaen Hsieh, and Chunchen Liu. 2021. "Memory-Efficient AI Algorithm for Infant Sleeping Death Syndrome Detection in Smart Buildings" AI 2, no. 4: 705-719. https://doi.org/10.3390/ai2040042
APA StyleHuang, Q., Hsieh, C., Hsieh, J., & Liu, C. (2021). Memory-Efficient AI Algorithm for Infant Sleeping Death Syndrome Detection in Smart Buildings. AI, 2(4), 705-719. https://doi.org/10.3390/ai2040042