Comparison of Various Nitrogen and Water Dual Stress Effects for Predicting Relative Water Content and Nitrogen Content in Maize Plants through Hyperspectral Imaging
Abstract
:1. Introduction
- In order to investigate how the popular imaging models confuse between different types of plant stresses, we conducted hyperspectral imaging for maize plants under three levels of N treatments inter-leaved with three levels of water treatments.
- Partial Least Squares (PLS) models to predict Relative Water Content (RWC) and N content were developed. We compared their accuracy and robustness according to the different N and water treatment datasets.
- RWC prediction using hyperspectral data was severely impacted by N stress difference. Conversely, N content prediction was robust against water stress difference.
- The new models developed from the inter-leaved assay significantly helped to relieve the impacts on RWC prediction.
2. Related Work
3. Materials and Methods
3.1. Hyperspectral Imaging System
3.2. Experimental Design
3.3. Image Acquisition and Sample Collection
3.4. Relative Water Content Measurements
3.5. Nitrogen Content Measurements
3.6. Image Processing
3.7. Data Analysis
3.8. Statistical Analysis
4. Results
4.1. RWC and N Content Ground Truth
4.2. PLS Modeling for RWC Prediction
4.3. PLS Modeling for N Content Prediction
5. Discussion
5.1. Effects of N and Water Treatments on RWC and N Content Ground Truth
5.2. N Treatment Effect on PLS Modeling for RWC Prediction
5.3. Water Treatment Effect on PLS Modeling for N Content Prediction N
5.4. The Limitation of This Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farooq, M.; Hussain, M.; Wahid, A.; Siddique, K.H.M. Drought Stress in Plants: An Overview. In Plant Responses to Drought Stress; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–33. [Google Scholar]
- Jamieson, P.D.; Martin, R.J.; Francis, G.S. Drought influences on grain yield of barley, wheat, and maize. New Zealand J. Crop. Hortic. Sci. 1995, 23, 55–66. [Google Scholar] [CrossRef]
- Shao, H.B.; Chu, L.Y.; Jaleel, C.A.; Manivannan, P.; Panneerselvam, R.; Shao, M.A. Understanding Water Deficit Stress-Induced Changes in the Basic Metabolism of Higher Plants-Biotechnologically and Sustainably Improving Agri-culture and the Ecoenvironment in Arid Regions of the Globe. Crit. Rev. Biotechnol. 2009, 29, 131–151. [Google Scholar] [CrossRef] [PubMed]
- Harrison, M.T.; Tardieu, F.; Dong, Z.; Messina, C.D.; Hammer, G.L. Characterizing drought stress and trait influence on maize yield under current and future conditions. Glob. Chang. Biol. 2014, 20, 867–878. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 2009, 29, 185–212. [Google Scholar] [CrossRef]
- Reddy, A.R.; Chaitanya, K.V.; Vivekanandan, M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 2004, 161, 1189–1202. [Google Scholar] [CrossRef]
- Marschner, H. Functions of Mineral Nutrients; Macronutrients. In Mineral Nutrition of Higher Plants; Academic Press: Cambridge, MA, USA, 1995; pp. 229–312. [Google Scholar]
- Crafts-Brandner, S.J.; Hölzer, R.; Feller, U. Influence of nitrogen deficiency on senescence and the amounts of RNA and proteins in wheat leaves. Physiol. Plant. 1998, 102, 192–200. [Google Scholar] [CrossRef]
- Evans, J.R. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 1989, 78, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Reddy, K.R.; Kakani, V.G.; Reddy, V.R. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. Eur. J. Agron. 2005, 22, 391–403. [Google Scholar] [CrossRef]
- Muñoz-Huerta, R.F.; Guevara-Gonzalez, R.G.; Contreras-Medina, L.M.; Torres-Pacheco, I.; Prado-Olivarez, J.; Ocampo-Velazquez, R.V. A Review of Methods for Sensing the Nitrogen Status in Plants: Advantages, Disadvantages and Recent Advances. Sensors 2013, 13, 10823–10843. [Google Scholar] [CrossRef]
- Turner, N.C. Techniques and experimental approaches for the measurement of plant water status. Plant Soil 1981, 58, 339–366. [Google Scholar] [CrossRef]
- Ge, Y.; Bai, G.; Stoerger, V.; Schnable, J.C. Temporal dynamics of maize plant growth, water use, and leaf water content using automated high throughput RGB and hyperspectral imaging. Comput. Electron. Agric. 2016, 127, 625–632. [Google Scholar] [CrossRef]
- Jin, X.; Xu, X.; Song, X.; Li, Z.; Wang, J.; Guo, W. Estimation of Leaf Water Content in Winter Wheat Using Grey Relational Analysis–Partial Least Squares Modeling with Hyperspectral Data. Agron. J. 2013, 105, 1385–1392. [Google Scholar] [CrossRef]
- Kovar, M.; Brestic, M.; Sytar, O.; Barek, V.; Hauptvogel, P.; Zivcak, M. Evaluation of Hyperspectral Reflectance Parameters to Assess the Leaf Water Content in Soybean. Water 2019, 11, 443. [Google Scholar] [CrossRef]
- Krishna, G.; Sahoo, R.N.; Singh, P.; Bajpai, V.; Patra, H.; Kumar, S.; Dandapani, R.; Gupta, V.K.; Viswanathan, C.; Ahmad, T.; et al. Comparison of various modelling approaches for water deficit stress monitoring in rice crop through hyperspectral remote sensing. Agric. Water Manag. 2019, 213, 231–244. [Google Scholar] [CrossRef]
- Pôças, I.; Gonçalves, J.; Costa, P.M.; Gonçalves, I.; Pereira, L.S.; Cunha, M. Hyperspectral-based predictive modelling of grapevine water status in the Portuguese Douro wine region. Int. J. Appl. Earth Obs. Geoinform. 2017, 58, 177–190. [Google Scholar] [CrossRef]
- Abdel-Rahman, E.M.; Ahmed, F.; Ismail, R. Random forest regression and spectral band selection for estimating sugarcane leaf nitrogen concentration using EO-1 Hyperion hyperspectral data. Int. J. Remote Sens. 2013, 34, 712–728. [Google Scholar] [CrossRef]
- Li, F.; Mistele, B.; Hu, Y.; Chen, X.; Schmidhalter, U. Reflectance estimation of canopy nitrogen content in winter wheat using optimised hyperspectral spectral indices and partial least squares regression. Eur. J. Agron. 2014, 52, 198–209. [Google Scholar] [CrossRef]
- Sabzi, S.; Pourdarbani, R.; Rohban, M.H.; García-Mateos, G.; Arribas, J.I. Estimation of nitrogen content in cucumber plant (Cucumis sativus L.) leaves using hyperspectral imaging data with neural network and partial least squares regressions. Chemom. Intell. Lab. Syst. 2021, 217, 104404. [Google Scholar] [CrossRef]
- Yu, X.; Lu, H.; Liu, Q. Deep-learning-based regression model and hyperspectral imaging for rapid detection of nitrogen concentration in oilseed rape (Brassica napus L.) leaf. Chemom. Intell. Lab. Syst. 2018, 172, 188–193. [Google Scholar] [CrossRef]
- Pandey, P.; Ge, Y.; Stoerger, V.; Schnable, J.C. High Throughput In vivo Analysis of Plant Leaf Chemical Properties Using Hyperspectral Imaging. Front. Plant Sci. 2017, 8, 1348. [Google Scholar] [CrossRef]
- Bruning, B.; Liu, H.; Brien, C.; Berger, B.; Lewis, M.; Garnett, T. The Development of Hyperspectral Distribution Maps to Predict the Content and Distribution of Nitrogen and Water in Wheat (Triticum aestivum). Front. Plant Sci. 2019, 10, 1380. [Google Scholar] [CrossRef] [PubMed]
- Corti, M.; Gallina, P.M.; Cavalli, D.; Cabassi, G. Hyperspectral imaging of spinach canopy under combined water and nitrogen stress to estimate biomass, water, and nitrogen content. Biosyst. Eng. 2017, 158, 38–50. [Google Scholar] [CrossRef]
- Lin, M.-Y.; Lynch, V.; Ma, D.; Maki, H.; Jin, J.; Tuinstra, M. Multi-Species Prediction of Physiological Traits with Hyperspectral Modeling. Plants 2022, 11, 676. [Google Scholar] [CrossRef] [PubMed]
- Heckathorn, S.A.; DeLucia, E.H.; Zielinski, R.E. The contribution of drought-related decreases in foliar nitrogen concentration to decreases in photosynthetic capacity during and after drought in prairie grasses. Physiol. Plant. 1997, 101, 173–182. [Google Scholar] [CrossRef]
- He, M.; Dijkstra, F.A. Drought effect on plant nitrogen and phosphorus: A metaanalysis. New Phytol. 2014, 204, 924–931. [Google Scholar] [CrossRef]
- Rouphael, Y.; Cardarelli, M.; Schwarz, D.; Franken, P.; Colla, G. Effects of Drought on Nutrient Uptake and Assimilation in Vegetable Crops. In Plant Responses to Drought Stress; Aroca, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 171–195. [Google Scholar] [CrossRef]
- Cramer, M.D.; Hawkins, H.-J.; Verboom, G.A. The importance of nutritional regulation of plant water flux. Oecologia 2009, 161, 15–24. [Google Scholar] [CrossRef]
- Yousfi, S.; Marín, J.; Parra, L.; Lloret, J.; Mauri, P.V. Remote sensing devices as key methods in the advanced turfgrass phenotyping under different water regimes. Agric. Water Manag. 2022, 266, 107581. [Google Scholar] [CrossRef]
- Colovic, M.; Yu, K.; Todorovic, M.; Cantore, V.; Hamze, M.; Albrizio, R.; Stellacci, A.M. Hyperspectral Vegetation Indices to Assess Water and Nitrogen Status of Sweet Maize Crop. Agronomy 2022, 12, 2181. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. Growing plants without soil by the water-culture method. Circ. Calif. Agric. Exp. Stn. 1938, 1–16. [Google Scholar]
- Hoagland, D.R.; Arnon, D.I. The water-culture method for growing plants without soil. Circ. Calif. Agric. Exp. Stn. 1950, 347, 1–32. [Google Scholar]
- Zhang, L.; Maki, H.; Ma, D.; Sánchez-Gallego, J.A.; Mickelbart, M.V.; Wang, L.; Rehman, T.U.; Jin, J. Optimized angles of the swing hyperspectral imaging system for single corn plant. Comput. Electron. Agric. 2019, 156, 349–359. [Google Scholar] [CrossRef]
- Zhao, Y.-R.; Yu, K.-Q.; He, Y. Hyperspectral Imaging Coupled with Random Frog and Calibration Models for Assessment of Total Soluble Solids in Mulberries. J. Anal. Methods Chem. 2015, 2015, 343782. [Google Scholar] [CrossRef] [PubMed]
- Cotrozzi, L.; Couture, J.J.; Cavender-Bares, J.; Kingdon, C.C.; Fallon, B.; Pilz, G.; Pellegrini, E.; Nali, C.; Townsend, P.A. Using foliar spectral properties to assess the effects of drought on plant water potential. Tree Physiol. 2017, 37, 1582–1591. [Google Scholar] [CrossRef] [PubMed]
- Nigon, T.J.; Mulla, D.J.; Rosen, C.J.; Cohen, Y.; Alchanatis, V.; Knight, J.; Rud, R. Hyperspectral aerial imagery for detecting nitrogen stress in two potato cultivars. Comput. Electron. Agric. 2015, 112, 36–46. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2018. Available online: https://www.R-project.org (accessed on 23 May 2023).
- Chang, C.-W.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R., Jr. Near-Infrared Reflectance Spectroscopy-Principal Components Regression Analyses of Soil Properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef]
- Fearn, T. Assessing Calibrations: SEP, RPD, RER and R2. NIR News 2002, 13, 12–14. [Google Scholar] [CrossRef]
- Wang, L.; Jin, J.; Song, Z.; Wang, J.; Zhang, L.; Rehman, T.U.; Ma, D.; Carpenter, N.R.; Tuinstra, M.R. LeafSpec: An accurate and portable hyperspectral corn leaf imager. Comput. Electron. Agric. 2020, 169, 105209. [Google Scholar] [CrossRef]
- Ma, D.; Wang, L.; Zhang, L.; Song, Z.; Rehman, T.U.; Jin, J. Stress Distribution Analysis on Hyperspectral Corn Leaf Images for Improved Phenotyping Quality. Sensors 2020, 20, 3659. [Google Scholar] [CrossRef]
N Treatment | Water Treatment | Number of Plants | ||
---|---|---|---|---|
Training | Test | Total | ||
Low N | Watered | 10 | 2 | 12 |
Low Drought | 10 | 2 | 12 | |
Drought | 10 | 2 | 12 | |
Medium N | Watered | 10 | 2 | 12 |
Low Drought | 10 | 2 | 12 | |
Drought | 10 | 2 | 12 | |
High N | Watered | 10 | 2 | 12 |
Low Drought | 10 | 2 | 12 | |
Drought | 10 | 2 | 12 | |
(Total) | 90 | 18 | 108 |
Factor | Df | ANOVA on RWC | ANOVA on N Content | ||||
---|---|---|---|---|---|---|---|
F | p | F | p | ||||
Nitrogen | 2 | 6.864 | 0.002 | ** | 98.785 | <0.001 | *** |
Water | 2 | 13.044 | <0.001 | *** | 5.136 | 0.008 | ** |
Nitrogen × Water | 4 | 0.634 | 0.640 | 1.013 | 0.405 |
Sub-Dataset | Training (n = 30) | Test (n = 18) | ||||||
---|---|---|---|---|---|---|---|---|
Approach | Label | PLS Comp | R2 | RMSECV | RPD | R2 | RMSEV | RPD |
Individual water treatment | Watered | 8 | 0.698 | 6.01 | 1.80 | 0.831 | 7.35 | 1.70 |
Low drought | 4 | 0.632 | 6.96 | 1.63 | 0.911 | 5.50 | 2.27 | |
Drought | 5 | 0.849 | 5.73 | 2.56 | 0.832 | 14.44 | 0.87 | |
Randomly selected | R1 | 7 | 0.757 | 7.36 | 2.00 | 0.934 | 4.73 | 2.64 |
R2 | 4 | 0.623 | 7.10 | 1.61 | 0.723 | 7.38 | 1.69 | |
R3 | 4 | 0.728 | 6.27 | 1.90 | 0.854 | 5.27 | 2.37 |
Sub-Dataset | Training (n = 30) | Test (n = 18) | ||||||
---|---|---|---|---|---|---|---|---|
Approach | Label | PLS Comp | R2 | RMSECV | RPD | R2 | RMSEV | RPD |
Individual water treatment | Watered | 1 | 0.799 | 0.204 | 2.23 | 0.896 | 0.170 | 3.06 |
Low drought | 3 | 0.809 | 0.193 | 2.28 | 0.842 | 0.210 | 2.47 | |
Drought | 5 | 0.820 | 0.204 | 2.34 | 0.835 | 0.223 | 2.33 | |
Randomly selected | R1 | 4 | 0.772 | 0.232 | 2.08 | 0.853 | 0.212 | 2.45 |
R2 | 1 | 0.800 | 0.170 | 2.24 | 0.896 | 0.172 | 3.02 | |
R3 | 3 | 0.854 | 0.197 | 2.59 | 0.863 | 0.206 | 2.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maki, H.; Lynch, V.; Ma, D.; Tuinstra, M.R.; Yamasaki, M.; Jin, J. Comparison of Various Nitrogen and Water Dual Stress Effects for Predicting Relative Water Content and Nitrogen Content in Maize Plants through Hyperspectral Imaging. AI 2023, 4, 692-705. https://doi.org/10.3390/ai4030036
Maki H, Lynch V, Ma D, Tuinstra MR, Yamasaki M, Jin J. Comparison of Various Nitrogen and Water Dual Stress Effects for Predicting Relative Water Content and Nitrogen Content in Maize Plants through Hyperspectral Imaging. AI. 2023; 4(3):692-705. https://doi.org/10.3390/ai4030036
Chicago/Turabian StyleMaki, Hideki, Valerie Lynch, Dongdong Ma, Mitchell R. Tuinstra, Masanori Yamasaki, and Jian Jin. 2023. "Comparison of Various Nitrogen and Water Dual Stress Effects for Predicting Relative Water Content and Nitrogen Content in Maize Plants through Hyperspectral Imaging" AI 4, no. 3: 692-705. https://doi.org/10.3390/ai4030036
APA StyleMaki, H., Lynch, V., Ma, D., Tuinstra, M. R., Yamasaki, M., & Jin, J. (2023). Comparison of Various Nitrogen and Water Dual Stress Effects for Predicting Relative Water Content and Nitrogen Content in Maize Plants through Hyperspectral Imaging. AI, 4(3), 692-705. https://doi.org/10.3390/ai4030036