Sustainable Machine Vision for Industry 4.0: A Comprehensive Review of Convolutional Neural Networks and Hardware Accelerators in Computer Vision
Abstract
:1. Introduction
1.1. Survey Objective
1.2. Existing Surveys
1.3. Establishing the Link between CNNs and Hardware
1.4. Linking Industrial IoT, CNNs and Hardware Accelerators
1.5. Structure
2. Image Classification
2.1. Conventional Image Processing
2.2. Convolutional Neural Networks
3. Object Detection
3.1. Anatomy for Object Detection
3.2. YOLOv8
3.3. YOLOv9
3.4. YOLOv10
4. Hardware Configurations
4.1. Graphical Processing Units (GPUs)
4.2. Field-Programmable Gate Arrays (FPGAs)
4.3. Application-Specific Integrated Circuits
5. Industrial Defect Detection
5.1. Textiles
5.2. Photovoltaics
5.3. Warehousing
5.4. Diverse Set of Applications
5.5. Robotic Vision
6. Challenges and the Future Path
Future Directions
7. Conclusions
Future Anticipations
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stipic, A.; Bronzin, T.; Prole, B.; Pap, K. Deep Learning Advancements: Closing the Gap. In Proceedings of the 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 20–24 May 2019; pp. 1087–1092. [Google Scholar]
- Hussain, M.; Al-Aqrabi, H.; Hill, R. Statistical Analysis and Development of an Ensemble-Based Machine Learning Model for Photovoltaic Fault Detection. Energies 2022, 15, 5492. [Google Scholar] [CrossRef]
- Hussain, M.; Chen, T.; Titrenko, S.; Su, P.; Mahmud, M. A Gradient Guided Architecture Coupled With Filter Fused Representations for Micro-Crack Detection in Photovoltaic Cell Surfaces. IEEE Access 2022, 10, 58950–58964. [Google Scholar] [CrossRef]
- Tariq, M.I.; Memon, N.A.; Ahmed, S.; Tayyaba, S.; Mushtaq, M.T.; Mian, N.A.; Imran, M.; Ashraf, M.W. A Review of Deep Learning Security and Privacy Defensive Techniques. Mob. Inf. Syst. 2020, 2020, 1–18. [Google Scholar] [CrossRef]
- Abdullah, M.; Fraz, M.M.; Barman, S.A. Localization and segmentation of optic disc in retinal images using circular Hough transform and grow-cut algorithm. PeerJ 2016, 4, e2003. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M. Exudate Detection: Integrating Retinal-Based Affine Mapping and Design Flow Mechanism to Develop Lightweight Architectures. IEEE Access 2023, 11, 125185–125203. [Google Scholar] [CrossRef]
- Chai, J.; Zeng, H.; Li, A.; Ngai, E.W.T. Deep learning in computer vision: A critical review of emerging techniques and application scenarios. Mach. Learn. Appl. 2021, 6, 100134. [Google Scholar] [CrossRef]
- Hussain, M.; Bird, J.J.; Faria, D.R. A Study on CNN Transfer Learning for Image Classification. In Advances in Computational Intelligence Systems: Contributions Presented at the 18th UK Workshop on Computational Intelligence, Nottingham, UK, 5–7 September 2018; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Du, J. Understanding of Object Detection Based on CNN Family and YOLO. J. Phys. Conf. Ser. 2018, 1004, 012029. [Google Scholar] [CrossRef]
- Yang, R.; Yu, Y. Artificial Convolutional Neural Network in Object Detection and Semantic Segmentation for Medical Imaging Analysis. Front. Oncol. 2021, 11, 638182. [Google Scholar] [CrossRef] [PubMed]
- Haupt, J.; Nowak, R. Compressive Sampling Vs. Conventional Imaging. In Proceedings of the 2006 International Conference on Image Processing, Atlanta, GA, USA, 8–11 October 2006; pp. 1269–1272. [Google Scholar] [CrossRef]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018, 4, e00938. [Google Scholar] [CrossRef]
- Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Li, F.-F. Imagenet: A large-scale hierarchical image database. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009. [Google Scholar]
- Strigl, D.; Kofler, K.; Podlipnig, S. Performance and Scalability of GPU-Based Convolutional Neural Networks. In Proceedings of the 2010 18th Euromicro Conference on Parallel, Distributed and Network-based Processing, Pisa, Italy, 17–19 February 2010; pp. 317–324. [Google Scholar] [CrossRef]
- Mittal, S. A survey of FPGA-based accelerators for convolutional neural networks. Neural Comput. Appl. 2018, 29, 1–31. [Google Scholar] [CrossRef]
- Lee, S.S.; Nguyen, T.D.; Meher, P.K.; Park, S.Y. Energy-Efficient High-Speed ASIC Implementation of Convolutional Neural Network Using Novel Reduced Critical-Path Design. IEEE Access 2022, 10, 34032–34045. [Google Scholar] [CrossRef]
- Qi, S.; Yang, J.; Zhong, Z. A review on industrial surface defect detection based on deep learning technology. In Proceedings of the 2020 3rd International Conference on Machine Learning and Machine Intelligence, Hangzhou, China, 18–20 September 2020; pp. 24–30. [Google Scholar]
- Cumbajin, E.; Rodrigues, N.; Costa, P.; Miragaia, R.; Frazão, L.; Costa, N.; Fernández-Caballero, A.; Carneiro, J.; Buruberri, L.H.; Pereira, A. A Systematic Review on Deep Learning with CNNs Applied to Surface Defect Detection. J. Imaging 2023, 9, 193. [Google Scholar] [CrossRef] [PubMed]
- Ghimire, D.; Kil, D.; Kim, S.H. A survey on efficient convolutional neural networks and hardware acceleration. Electronics 2022, 11, 945. [Google Scholar] [CrossRef]
- Capra, M.; Bussolino, B.; Marchisio, A.; Shafique, M.; Masera, G.; Martina, M. An updated survey of efficient hardware architectures for accelerating deep convolutional neural networks. Future Internet 2020, 12, 113. [Google Scholar] [CrossRef]
- Zahid, A.; Hussain, M.; Hill, R.; Al-Aqrabi, H. Lightweight Convolutional Network For Automated Photovoltaic Defect Detection. In Proceedings of the 2023 9th International Conference on Information Technology Trends (ITT), Dubai, United Arab Emirates, 24–25 May 2023; pp. 133–138. [Google Scholar]
- Aydin, B.A.; Hussain, M.; Hill, R.; Al-Aqrabi, H. Domain Modelling For A Lightweight Convolutional Network Focused On Automated Exudate Detection in Retinal Fundus Images. In Proceedings of the 2023 9th International Conference on Information Technology Trends (ITT), Dubai, United Arab Emirates, 24–25 May 2023; pp. 145–150. [Google Scholar]
- Hussain, M.; Hill, R. Custom Lightweight Convolutional Neural Network Architecture for Automated Detection of Damaged Pallet Racking in Warehousing & Distribution Centers. IEEE Access 2023, 11, 58879–58889. [Google Scholar] [CrossRef]
- Hussain, M.; Al-Aqrabi, H.; Munawar, M.; Hill, R. Feature Mapping for Rice Leaf Defect Detection Based on a Custom Convolutional Architecture. Foods 2022, 11, 3914. [Google Scholar] [CrossRef] [PubMed]
- Lowe, D. Object recognition from local scale-invariant features. In Proceedings of the International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 2. [Google Scholar]
- Oliva, A.; Torralba, A. Modeling the shape of the scene: A holistic representation of the spatial envelope. Int. J. Comput. Vis. 2001, 42, 145–175. [Google Scholar] [CrossRef]
- Rakotomamonjy, A.; Gasso, G. Histogram of gradients of Time-Frequency Representations for Audio Scene Detection. IEEE/ACM Trans. Audio Speech Lang. Process. 2014, 23, 142–153. [Google Scholar] [CrossRef]
- Daniilidis, K.; Maragos, P.; Paragios, N. Improving the Fisher kernel for large-scale image classification. In Proceedings of the European Conference on Computer Vision, Crete, Greece, 5–11 September 2010; pp. 143–156. [Google Scholar]
- Li, F.F.; Perona, P. A Bayesian hierarchical model for learning natural scene categories. In Proceedings of the Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Perez, H.; Tah, J.H.M.; Mosavi, A. Deep Learning for Detecting Building Defects Using Convolutional Neural Networks. Sensors 2019, 19, 3556. [Google Scholar] [CrossRef]
- Eckle, K.; Schmidt-Hieber, J. A comparison of deep networks with ReLU activation function and linear spline-type methods. Neural Netw. 2019, 110, 232–242. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Zoph, B.; Le, Q. Neural architecture search with reinforcement learning. In Proceedings of the International Conference on Learning Representations, Toulon, France, 24–26 April 2017. [Google Scholar]
- Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: Alexnet-Level Accuracy with 50x Fewer Parameters and <0.5 Mb Model Size. arXiv 2016, arXiv:1602.07360. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Wey, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding. In Proceedings of the International Conference on Learning Representations, San Juan, Puerto Rico, 2–4 May 2016. [Google Scholar]
- Khan, Z.Y.; Niu, Z. CNN with depthwise separable convolutions and combined kernels for rating prediction. Expert Syst. Appl. 2021, 170, 114528. [Google Scholar] [CrossRef]
- Wu, B.; Wan, A.; Yue, X.; Jin, P.; Zhao, S.; Golmant, N.; Gholaminejad, A.; Gonzalez, J.; Keutzer, K. Shift: A Zero Flop, Zero Parameter Alternative to Spatial Convolutions. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Chen, W.; Xie, D.; Zhang, Y.; Pu, S. All you need is a few shifts: Designing efficient convolutional neural networks for image classification. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009. [Google Scholar]
- Viola, P.; Jones, M.J. Robust real-time face detection. Int. J. Comput. Vis. 2004, 57, 137–154. [Google Scholar] [CrossRef]
- Felzenszwalb, P.F.; Girshick, R.B.; McAllester, D.; Ramanan, D. Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 1627–1645. [Google Scholar] [CrossRef]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005; Volume 1. [Google Scholar]
- Ahonen, T.; Hadid, A.; Pietikainen, M. Face description with local binary patterns: Application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 2037–2041. [Google Scholar] [CrossRef]
- Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The PASCAL Visual Object Classes (VOC) challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common objects in context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014. [Google Scholar]
- Uijlings, J.R.; Van De Sande, K.E.; Gevers, T.; Smeulders, A.W. Selective search for object recognition. Int. J. Comput. Vis. 2013, 104, 154–171. [Google Scholar] [CrossRef]
- Girshick, R. Fast R-CNN. In Proceedings of the International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1137–1149. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 936–944. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016. [Google Scholar]
- Redmon, J.; Ali, A. YOLO9000: Better, faster, stronger. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Redmon, J.; Ali, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- ultralytics/yolov5: V3.0. 2020. Available online: https://zenodo.org/records/3983579 (accessed on 11 February 2024).
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications. arXiv 2022, arXiv:2209.02976. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y. YOLOv6. GitHub. 2022. Available online: https://github.com/meituan/YOLOv6 (accessed on 3 June 2024).
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv 2022, arXiv:2207.02696. [Google Scholar]
- Sohan, M.; Sai Ram, T.; Reddy, R.; Venkata, C. A Review on YOLOv8 and Its Advancements. In Proceedings of the International Conference on Data Intelligence and Cognitive Informatics, Tirunelveli, India, 27–28 June 2023; pp. 529–545. [Google Scholar]
- Wang, C.Y.; Yeh, I.H.; Liao, H.Y.M. YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information. arXiv 2024, arXiv:2402.13616. [Google Scholar]
- Wang, C.Y.; Liao, H.Y.M.; Wu, Y.H.; Chen, P.Y.; Hsieh, J.W.; Yeh, I.H. CSPNet: A new backbone that can enhance learning capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 390–391. [Google Scholar]
- Wang, C.Y.; Liao, H.Y.M.; Yeh, I.H. Designing network design strategies through gradient path analysis. arXiv 2022, arXiv:2211.04800. [Google Scholar]
- Wong, K.Y. YOLOv9 GitHub Repository. 2024. Available online: https://github.com/WongKinYiu/yolov9 (accessed on 3 June 2024).
- Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J.; Ding, G. YOLOv10: Real-Time End-to-End Object Detection. arXiv 2024, arXiv:2405.14458. [Google Scholar]
- Ultralytics. YOLOv10 Documentation: Model Variants. Available online: https://docs.ultralytics.com/models/yolov10/#model-variants (accessed on 3 June 2024).
- Neshatpour, K.; Malik, M.; Ghodrat, M.A.; Sasan, A.; Homayoun, H. Energy-efficient acceleration of big data analytics applications using FPGAs. In Proceedings of the 2015 IEEE International Conference on Big Data (Big Data), Santa Clara, CA, USA, 29 October–1 November 2015; pp. 115–123. [Google Scholar] [CrossRef]
- Kontorinis, V.; Zhang, L.; Aksanli, B.; Sampson, J.; Homayoun, H.; Pettis, E. Managing distributed ups energy for effective power capping in data centers. ACM SIGARCH Comput. Archit. News 2012, 40, 488–499. [Google Scholar] [CrossRef]
- Hardavellas, N.; Ferdman, M.; Falsafi, B.; Ailamaki, A. Toward dark silicon in servers. IEEE Micro 2011, 31, 6–15. [Google Scholar] [CrossRef]
- Yan, C.; Yue, T. A Novel Method for Dynamic Modelling and Real-time Rendering Based on GPU. Geo-Inf. Sci. 2012, 14, 149–157. [Google Scholar] [CrossRef]
- Brodtkorb, A.R.; Hagen, T.R.; Sætra, M.L. Graphics processing unit (GPU) programming strategies and trends in GPU computing. J. Parallel Distrib. Comput. 2013, 73, 4–13. [Google Scholar] [CrossRef]
- Barrett, R.; Chakraborty, M.; Amirkulova, D.; Gandhi, H.; Wellawatte, G.; White, A. HOOMD-TF: GPU-Accelerated, Online Machine Learning in the HOOMD-blue Molecular Dynamics Engine. J. Open Source Softw. 2020, 5, 2367. [Google Scholar] [CrossRef]
- Ma, H. Development of a CPU-GPU heterogeneous platform based on a nonlinear parallel algorithm. Nonlinear Eng. 2022, 11, 215–222. [Google Scholar] [CrossRef]
- Stone, J.E.; Gohara, D.; Shi, G. OpenCL: A parallel programming standard for heterogeneous computing systems. Comput. Sci. Eng. 2010, 12, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Garland, M.; Le Grand, S.; Nickolls, J.; Anderson, J.; Hardwick, J.; Morton, S.; Phillips, E.; Zhang, Y.; Volkov, V. Parallel computing experiences with CUDA. IEEE Micro 2008, 28, 13–27. [Google Scholar] [CrossRef]
- Halvorsen, M. Hardware Acceleration of Convolutional Neural Networks. Master’s Thesis, Norwegian University of Science Technology, Trondheim, Norway, 2015. [Google Scholar]
- Chetlur, S.; Woolley, C.; Vandermersch, P.; Cohen, J.; Tran, J.; Catanzaro, B.; Shelhamer, E. CUDNN: Efficient Primitives for Deep Learning. arXiv 2014, arXiv:1410.0759. [Google Scholar]
- Cudaconvnet2. Available online: https://code.google.com/archive/p/cuda-convnet2/ (accessed on 3 June 2024).
- Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the International Conference on Multimedia, Orlando, FL, USA, 3–7 November 2014. [Google Scholar]
- TensorFlow. Available online: https://www.tensorflow.org/ (accessed on 3 June 2024).
- Collobert, R.; Kavukcuoglu, K.; Farabet, C. Torch7: A MATLAB-like environment for machine learning. In Proceedings of the Conference on Neural Information Processing System Workshop, Granada, Spain, 12–15 December 2011. [Google Scholar]
- Mittal, S. A Survey on optimized implementation of deep learning models on the NVIDIA Jetson platform. J. Syst. Archit. 2019, 97, 428–442. [Google Scholar] [CrossRef]
- Jin, R.; Niu, Q. Automatic Fabric Defect Detection Based on an Improved YOLOv5. Math. Probl. Eng. 2021, 2021, 7321394. [Google Scholar] [CrossRef]
- Raspberry Pi 4 Model B. Available online: https://thepihut.com/collections/raspberry-pi/products/raspberry-pi-4-model-b (accessed on 25 May 2022).
- Mohamad Noor, M.b.; Hassan, W.H. Current research on Internet of Things (IoT) security: A survey. Comput. Netw. 2019, 148, 283–294. [Google Scholar] [CrossRef]
- Frank, A.G.; Dalenogare, L.S.; Ayala, N.F. Industry 4.0 technologies: Implementation patterns in manufacturing companies. Int. J. Prod. Econ. 2019, 210, 15–26. [Google Scholar] [CrossRef]
- Farooq, U.; Marrakchi, Z.; Mehrez, H. FPGA Architectures: An Overview. In Tree-based Heterogeneous FPGA Architectures; Springer: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Qiu, J.; Wang, J.; Yao, S.; Guo, K.; Li, B.; Zhou, E.; Yu, J.; Tang, T.; Xu, N.; Song, S.; et al. Going deeper with embedded FPGA platform for convolutional neural network. In Proceedings of the International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, 21–23 February 2016. [Google Scholar]
- Nurvitadhi, E.; Venkatesh, G.; Sim, J.; Marr, D.; Huang, R.; Ong Gee Hock, J.; Liew, Y.T.; Srivatsan, K.; Moss, D.; Subhaschandra, S.; et al. Can FPGAs beat GPUs in accelerating next-generation deep neural networks? In Proceedings of the International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, 22–24 February 2017. [Google Scholar]
- Liu, Y.; Liu, P.; Jiang, Y.; Yang, M.; Wu, K.; Wang, W.; Yao, Q. Building a multi-fpga-based emulation framework to support noc design and verification. Int. J. Electron. 2010, 97, 1241–1262. [Google Scholar] [CrossRef]
- Dondon, P.; Carvalho, J.; Gardere, R.; Lahalle, P.; Tsenov, G.; Mladenov, V. Implementation of a feed-forward Artificial Neural Network in VHDL on FPGA. In Proceedings of the 12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL), Belgrade, Serbia, 25–27 November 2014. [Google Scholar] [CrossRef]
- Ünsalan, C.; Tar, B. Digital System Design with FPGA: Implementation Using Verilog and VHDL; McGraw-Hill Education: New York, NY, USA, 2017. [Google Scholar]
- Zhao, R.; Song, W.; Zhang, W.; Xing, T.; Lin, J.H.; Srivastava, M.; Gupta, R.; Zhang, Z. Accelerating binarized convolutional neural networks with software-programmable FPGAs. In Proceedings of the International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, 22–24 February 2017. [Google Scholar]
- Wei, X.; Liang, Y.; Cong, J. Overcoming Data Transfer Bottlenecks in FPGA-based DNN Accelerators via Layer Conscious Memory Management. In Proceedings of the 2019 56th ACM/IEEE Design Automation Conference (DAC), Las Vegas, NV, USA, 2–6 June 2019. [Google Scholar]
- Abtahi, T.; Shea, C.; Kulkarni, A.; Mohsenin, T. Accelerating Convolutional Neural Network With FFT on Embedded Hardware. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2018, 26, 1737–1749. [Google Scholar] [CrossRef]
- Kala, S.; Jose, B.R.; Mathew, J.; Nalesh, S. High-Performance CNN Accelerator on FPGA Using Unified Winograd-GEMM Architecture. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2019, 27, 2816–2828. [Google Scholar] [CrossRef]
- Lavin, A.; Gray, S. Fast algorithms for convolutional neural networks. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar]
- Bottleson, J.; Kim, S.; Andrews, J.; Bindu, P.; Murthy, D.N.; Jin, J. CLCAFFE: OpenCL accelerated CAFFE for convolutional neural networks. In Proceedings of the International Parallel and Distributed Processing Symposium Workshops, Chicago, IL, USA, 23–27 May 2016. [Google Scholar]
- Winograd, S. Arithmetic Complexity of Computations; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1980. [Google Scholar]
- DiCecco, R.; Lacey, G.; Vasiljevic, J.; Chow, P.; Taylor, G.; Areibi, S. Caffeinated FPGAs: FPGA Framework for Convolutional Neural Networks. In Proceedings of the Field-Programmable Technology, Xi’an, China, 7–9 December 2016. [Google Scholar]
- Sankaradas, M.; Jakkula, V.; Cadambi, S.; Chakradhar, S.; Durdanovic, I.; Cosatto, E.; Graf, H.P. A Massively Parallel Coprocessor for Convolutional Neural Networks. In Proceedings of the Application-Specific Systems, Architectures and Processors, Boston, MA, USA, 7–9 July 2009. [Google Scholar]
- Chakradhar, S.; Sankaradas, M.; Jakkula, V.; Cadambi, S. A dynamically configurable coprocessor for convolutional neural networks. In Proceedings of the 37th Annual International Symposium on Computer Architecture, Saint-Malo, France, 19–23 June 2010; pp. 247–257. [Google Scholar]
- Farabet, C.; Martini, B.; Corda, B.; Akselrod, P.; Culurciello, E.; LeCun, Y. Neuflow: A runtime reconfigurable dataflow processor for vision. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 20–25 June 2011. [Google Scholar]
- Zhang, C.; Li, P.; Sun, G.; Guan, Y.; Xiao, B.; Cong, J. Optimizing FPGA-based accelerator design for deep convolutional neural networks. In Proceedings of the International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, 22–24 February 2015. [Google Scholar]
- Rahman, A.; Oh, S.; Lee, J.; Choi, K. Design Space Exploration of FPGA Accelerators for Convolutional Neural Networks. In Proceedings of the Design, Automation & Test in Europe, Lausanne, Switzerland, 27–31 March 2017. [Google Scholar]
- Li, Y.; Liu, Z.; Xu, K.; Yu, H.; Ren, F. A GPU-outperforming FPGA accelerator architecture for binary convolutional neural networks. J. Emerg. Technol. Comput. Syst. 2018, 14, 18. [Google Scholar] [CrossRef]
- Derrien, S.; Rajopadhye, S. Loop tiling for reconfigurable accelerators. In Proceedings of the Conference on Field Programmable Logic and Applications, Belfast, UK, 27–29 August 2001. [Google Scholar]
- Liu, B.; Wang, M.; Foroosh, H.; Tappen, M.; Pensky, M. Sparse convolutional neural networks. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Courbariaux, M.; Bengio, Y.; David, J.P. Training Deep Neural Networks with Low Precision Multiplications. arXiv 2014, arXiv:1412.7024. [Google Scholar]
- Zhang, X.; Liu, X.; Ramachandran, A.; Zhuge, C.; Tang, S.; Ouyang, P.; Cheng, Z.; Rupnow, K.; Chen, D. High-performance video content recognition with long-term recurrent convolutional network for FPGA. In Proceedings of the Conference on Field Programmable Logic and Applications, Ghent, Belgium, 4–8 September 2017. [Google Scholar]
- Yang, T.J.; Chen, Y.H.; Sze, V. Designing energy-efficient convolutional neural networks using energy-aware pruning. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Page, A.; Jafari, A.; Shea, C.; Mohsenin, T. SPARCNet: A hardware accelerator for efficient deployment of sparse convolutional networks. J. Emerg. Technol. Comput. Syst. 2017, 13, 31. [Google Scholar] [CrossRef]
- Rigamonti, R.; Sironi, A.; Lepetit, V.; Fua, P. Learning separable filters. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013. [Google Scholar]
- Ma, Y.; Cao, Y.; Vrudhula, S.; Seo, J.S. Optimizing loop operation and dataflow in FPGA acceleration of deep convolutional neural networks. In Proceedings of the International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, 22–24 February 2017. [Google Scholar]
- Suda, N.; Chandra, V.; Dasika, G.; Mohanty, A.; Ma, Y.; Vrudhula, S.; Seo, J.S.; Cao, Y. Throughput-optimized OpenCL-based FPGA accelerator for large-scale convolutional neural networks. In Proceedings of the International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, 21–23 February 2016. [Google Scholar]
- Courbariaux, M.; Hubara, I.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained To±1. arXiv 2016, arXiv:1602.02830. [Google Scholar]
- Rui, J.; Niu, Q. Research on textile defects detection based on improved generative adversarial network. J. Eng. Fibers Fabr. 2022, 17, 15589250221101382. [Google Scholar] [CrossRef]
- Qin, Y.; Purdy, R.; Probst, A.; Lin, C.Y.; Zhu, J.G. ASIC Implementation of Non-linear CNN-based Data Detector for TDMR System in 28nm CMOS at 200Mbits/s Throughput. IEEE Trans. Magn. 2022, 59, 1–8. [Google Scholar] [CrossRef]
- HUAWEI. HUAWEI Reveals the Future of Mobile AI and IFA 2017; HUAWEI: Shenzhen, China, 2017. [Google Scholar]
- Jouppi, N.P.; Young, C.; Patil, N.; Patterson, D.; Agrawal, G.; Bajwa, R.; Bates, S.; Bhatia, S.; Boden, N.; Borchers, A.; et al. In-Datacenter Performance Analysis of a Tensor Processing Unit. In Proceedings of the International Symposium on Computer Architecture (ISCA), Toronto, ON, Canada, 24–28 June 2017. [Google Scholar]
- Malamas, E.N.; Petrakis, E.G.; Zervakis, M.; Petit, L.; Legat, J.D. A survey on industrial vision systems, applications and tools. Image Vis. Comput. 2003, 21, 171–188. [Google Scholar] [CrossRef]
- Zhang, J.; Jing, J.; Lu, P.; Song, S. Improved MobileNetV2-SSDLite for automatic fabric defect detection system based on cloud-edge computing. Measurement 2022, 201, 111665. [Google Scholar] [CrossRef]
- Li, F.; Li, F. Bag of tricks for fabric defect detection based on Cascade R-CNN. Text. Res. J. 2020, 91, 599–612. [Google Scholar] [CrossRef]
- Song, S.; Jing, J.; Huang, Y.; Shi, M. EfficientDet for fabric defect detection based on edge computing. J. Eng. Fibers Fabr. 2021, 16, 155892502110083. [Google Scholar] [CrossRef]
- Hussain, M.; Al-Aqrabi, H.; Hill, R. PV-CrackNet Architecture for Filter Induced Augmentation and Micro-Cracks Detection within a Photovoltaic Manufacturing Facility. Energies 2022, 15, 8667. [Google Scholar] [CrossRef]
- Dhimsih, M.; Mather, P. Development of Novel Solar Cell Micro Crack Detection Technique. IEEE Trans. Semicond. Manuf. 2019, 32, 277–285. [Google Scholar] [CrossRef]
- Luo, Z.; Cheng, S.Y.; Zheng, Q.Y. Corrigendum: GAN-Based Augmentation for Improving CNN Performance of Classification of Defective Photovoltaic Module Cells in Electroluminescence Images. IOP Conf. Ser. Earth Environ. Sci. 2019, 354, 012132. [Google Scholar] [CrossRef]
- Su, B.; Chen, H.; Chen, P.; Bian, G.; Liu, K.; Liu, W. Deep Learning-Based Solar-Cell Manufacturing Defect Detection With Complementary Attention Network. IEEE Trans. Ind. Inform. 2021, 17, 4084–4095. [Google Scholar] [CrossRef]
- Ahmad, A.; Jin, Y.; Zhu, C.; Javed, I.; Maqsood, A.; Akram, M.W. Photovoltaic cell defect classification using convolutional neural network and support vector machine. IET Renew. Power Gener. 2020, 14, 2693–2702. [Google Scholar] [CrossRef]
- Langley, C.J.; Novack, R.A.; Gibson, B.J.; Coyle, J.J. Supply Chain Management: A Logistics Perspective, 11th ed.; Cengage Learning: Boston, MA, USA, 2020. [Google Scholar]
- Hussain, M.; Chen, T.; Hill, R. Moving toward Smart Manufacturing with an Autonomous Pallet Racking Inspection System Based on MobileNetV2. J. Manuf. Mater. Process. 2022, 6, 75. [Google Scholar] [CrossRef]
- Hussain, M.; Al-Aqrabi, H.; Munawar, M.; Hill, R.; Alsboui, T. Domain Feature Mapping with YOLOv7 for Automated Edge-Based Pallet Racking Inspections. Sensors 2022, 22, 6927. [Google Scholar] [CrossRef] [PubMed]
- Farahnakian, F.; Koivunen, L.; Mäkilä, T.; Heikkonen, J. Towards Autonomous Industrial Warehouse Inspection. In Proceedings of the 2021 26th International Conference on Automation and Computing (ICAC), Portsmouth, UK, 2–4 September 2021. [Google Scholar] [CrossRef]
- Hussain, M. YOLO-v5 Variant Selection Algorithm Coupled with Representative Augmentations for Modelling Production-Based Variance in Automated Lightweight Pallet Racking Inspection. Big Data Cogn. Comput. 2023, 7, 120. [Google Scholar] [CrossRef]
- Tao, X.; Zhang, D.; Ma, W.; Liu, X.; Xu, D. Automatic metallic surface defect detection and recognition with convolutional neural networks. Appl. Sci. 2018, 8, 1575. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, K.; Wang, L. Metal surface defect detection using modified YOLO. Algorithms 2021, 14, 257. [Google Scholar] [CrossRef]
- Lin, H.I.; Wibowo, F.S. Image data assessment approach for deep learning-based metal surface defect-detection systems. IEEE Access 2021, 9, 47621–47638. [Google Scholar] [CrossRef]
- Xin, H.; Chen, Z.; Wang, B. PCB electronic component defect detection method based on improved YOLOv4 algorithm. J. Phys. Conf. Ser. 2021, 1827, 012167. [Google Scholar] [CrossRef]
- Jeon, M.; Yoo, S.; Kim, S.W. A contactless PCBA defect detection method: Convolutional neural networks with thermographic images. IEEE Trans. Components Packag. Manuf. Technol. 2022, 12, 489–501. [Google Scholar] [CrossRef]
- Santoso, A.D.; Cahyono, F.B.; Prahasta, B.; Sutrisno, I.; Khumaidi, A. Development of PCB Defect Detection System Using Image Processing With YOLO CNN Method. Int. J. Artif. Intell. Res. 2022, 6. [Google Scholar] [CrossRef]
- Wang, S.; Wu, L.; Wu, W.; Li, J.; He, X.; Song, F. Optical fiber defect detection method based on DSSD network. In Proceedings of the 2019 IEEE International Conference on Smart Internet of Things (SmartIoT), Tianjin, China, 9–11 August 2019; pp. 422–426. [Google Scholar]
- Mei, S.; Cai, Q.; Gao, Z.; Hu, H.; Wen, G. Deep learning based automated inspection of weak microscratches in optical fiber connector end-face. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [Google Scholar] [CrossRef]
- Han, K.; Sun, M.; Zhou, X.; Zhang, G.; Dang, H.; Liu, Z. A new method in wheel hub surface defect detection: Object detection algorithm based on deep learning. In Proceedings of the 2017 International Conference on Advanced Mechatronic Systems (ICAMechS), Xiamen, China, 6–9 December 2017; pp. 335–338. [Google Scholar]
- Sun, X.; Gu, J.; Huang, R.; Zou, R.; Giron Palomares, B. Surface defects recognition of wheel hub based on improved faster R-CNN. Electronics 2019, 8, 481. [Google Scholar] [CrossRef]
- Cheng, S.; Lu, J.; Yang, M.; Zhang, S.; Xu, Y.; Zhang, D.; Wang, H. Wheel hub defect detection based on the DS-Cascade RCNN. Measurement 2023, 206, 112208. [Google Scholar] [CrossRef]
- Lin, H.; Li, B.; Wang, X.; Shu, Y.; Niu, S. Automated defect inspection of LED chip using deep convolutional neural network. J. Intell. Manuf. 2019, 30, 2525–2534. [Google Scholar] [CrossRef]
- Stern, M.L.; Schellenberger, M. Fully convolutional networks for chip-wise defect detection employing photoluminescence images: Efficient quality control in LED manufacturing. J. Intell. Manuf. 2021, 32, 113–126. [Google Scholar] [CrossRef]
- Zheng, P.; Lou, J.; Wan, X.; Luo, Q.; Li, Y.; Xie, L.; Zhu, Z. LED Chip Defect Detection Method Based on a Hybrid Algorithm. Int. J. Intell. Syst. 2023, 2023. [Google Scholar] [CrossRef]
- Koodtalang, W.; Sangsuwan, T.; Sukanna, S. Glass bottle bottom inspection based on image processing and deep learning. In Proceedings of the 2019 Research, Invention, and Innovation Congress (RI2C), Bangkok, Thailand, 11–13 December 2019; pp. 1–5. [Google Scholar]
- Zhang, X.; Yan, L.; Yan, H. Defect detection of bottled liquor based on deep learning. In Proceedings of the CSAA/IET International Conference on Aircraft Utility Systems, Online, 18–21 September 2020; IET: Stevenage, UK, 2021. [Google Scholar] [CrossRef]
- Gizaw, A.; Kebebaw, T. Water Bottle Defect Detection System Using Convolutional Neural Network. In Proceedings of the 2022 International Conference on Information and Communication Technology for Development for Africa (ICT4DA), Bahir Dar, Ethiopia, 28–30 November 2022; pp. 19–24. [Google Scholar]
- Qu, Z.; Shen, J.; Li, R.; Liu, J.; Guan, Q. Partsnet: A unified deep network for automotive engine precision parts defect detection. In Proceedings of the 2018 2nd International Conference on Computer Science and Artificial Intelligence, Shenzhen, China, 8–10 December 2018; 2018; pp. 594–599. [Google Scholar]
- Yang, T.; Xiao, L.; Gong, B.; Huang, L. Surface defect recognition of varistor based on deep convolutional neural networks. In Proceedings of the Optoelectronic Imaging and Multimedia Technology VI, Hangzhou, China, 20–23 October 2019; Volume 11187, pp. 267–274. [Google Scholar]
- Yang, T.; Peng, S.; Huang, L. Surface defect detection of voltage-dependent resistors using convolutional neural networks. Multimed. Tools Appl. 2020, 79, 6531–6546. [Google Scholar] [CrossRef]
- Stephen, O.; Maduh, U.J.; Sain, M. A machine learning method for detection of surface defects on ceramic tiles using convolutional neural networks. Electronics 2021, 11, 55. [Google Scholar] [CrossRef]
- Lu, F.; Zhang, Z.; Guo, L.; Chen, J.; Zhu, Y.; Yan, K.; Zhou, X. HFENet: A lightweight hand-crafted feature enhanced CNN for ceramic tile surface defect detection. Int. J. Intell. Syst. 2022, 37, 10670–10693. [Google Scholar] [CrossRef]
- Wan, G.; Fang, H.; Wang, D.; Yan, J.; Xie, B. Ceramic tile surface defect detection based on deep learning. Ceram. Int. 2022, 48, 11085–11093. [Google Scholar] [CrossRef]
- Shi, J.; Li, Z.; Zhu, T.; Wang, D.; Ni, C. Defect detection of industry wood veneer based on NAS and multi-channel mask R-CNN. Sensors 2020, 20, 4398. [Google Scholar] [CrossRef]
- Chen, L.C.; Pardeshi, M.S.; Lo, W.T.; Sheu, R.K.; Pai, K.C.; Chen, C.Y.; Tsai, P.Y.; Tsai, Y.T. Edge-glued wooden panel defect detection using deep learning. Wood Sci. Technol. 2022, 56, 477–507. [Google Scholar] [CrossRef]
- Lim, W.H.; Bonab, M.B.; Chua, K.H. An Aggressively Pruned CNN Model With Visual Attention for Near Real-Time Wood Defects Detection on Embedded Processors. IEEE Access 2023, 11, 36834–36848. [Google Scholar] [CrossRef]
- Huang, Y.; Qiu, C.; Yuan, K. Surface defect saliency of magnetic tile. Vis. Comput. 2020, 36, 85–96. [Google Scholar] [CrossRef]
- Soukup, D.; Huber-Mörk, R. Convolutional neural networks for steel surface defect detection from photometric stereo images. In Proceedings of the International Symposium on Visual Computing, Las Vegas, NV, USA, 8–10 December 2014; pp. 668–677. [Google Scholar]
- Cha, Y.J.; Choi, W.; Büyüköztürk, O. Deep learning-based crack damage detection using convolutional neural networks. Comput.-Aided Civ. Infrastruct. Eng. 2017, 32, 361–378. [Google Scholar] [CrossRef]
- Cha, Y.J.; Choi, W.; Suh, G.; Mahmoudkhani, S.; Büyüköztürk, O. Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types. Comput.-Aided Civ. Infrastruct. Eng. 2018, 33, 731–747. [Google Scholar] [CrossRef]
- Cognex Corporation. Cognex Corporation—Machine Vision and Industrial Barcode Reading Products. 2024. Available online: https://www.cognex.com/en-gb/products.aspx?langtype= (accessed on 11 June 2024).
- Keyence Corporation. Keyence Corporation—Sensors and Machine Vision Systems. 2024. Available online: https://www.keyence.co.uk/products/vision/vision-sys/ (accessed on 12 June 2024).
- Cognex Corporation. In-Sight D900—Deep Learning Vision System. 2024. Available online: https://www.cognex.com/en-gb/products/machine-vision/2d-machine-vision-systems/in-sight-9000-series (accessed on 11 June 2024).
- Alif, M.A.R.; Hussain, M. Lightweight Convolutional Network with Integrated Attention Mechanism for Missing Bolt Detection in Railways. Metrology 2024, 4, 254–278. [Google Scholar] [CrossRef]
- Dziubek, M.; Rysiński, J.; Jancarczyk, D. Exploring the ViDiDetect Tool for Automated Defect Detection in Manufacturing with Machine Vision. Appl. Sci. 2023, 13, 11098. [Google Scholar] [CrossRef]
Layer | Output Size | Filter Size/Stride |
---|---|---|
Input | 224 × 224 × 3 | - |
Conv1-64 | 224 × 224 × 64 | 3 × 3/1 |
Conv2-64 | 224 × 224 × 64 | 3 × 3/1 |
MaxPool1 | 112 × 112 × 64 | 2 × 2/2 |
Conv3-128 | 112 × 112 × 128 | 3 × 3/1 |
Conv4-128 | 112 × 112 × 128 | 3 × 3/1 |
MaxPool2 | 56 × 56 × 128 | 2 × 2/2 |
Conv5-256 | 56 × 56 × 256 | 3 × 3/1 |
Conv6-256 | 56 × 56 × 256 | 3 × 3/1 |
Conv7-256 | 56 × 56 × 256 | 3 × 3/1 |
MaxPool3 | 28 × 28 × 256 | 2 × 2/2 |
Conv8-512 | 28 × 28 × 512 | 3 × 3/1 |
Conv9-512 | 28 × 28 × 512 | 3 × 3/1 |
Conv10-512 | 28 × 28 × 512 | 3 × 3/1 |
MaxPool4 | 14 × 14 × 512 | 2 × 2/2 |
Conv11-512 | 14 × 14 × 512 | 3 × 3/1 |
Conv12-512 | 14 × 14 × 512 | 3 × 3/1 |
Conv13-512 | 14 × 14 × 512 | 3 × 3/1 |
MaxPool5 | 7 × 7 × 512 | 2 × 2/2 |
FC1-4096 | 4096 | - |
FC2-4096 | 4096 | - |
FC3-1000 | 1000 | - |
Softmax | 1000 | - |
Variant | AP-Val (%) | Fps (b = 32) | Latency (ms) | Param (M) | Flops (G) |
---|---|---|---|---|---|
v5-L | 67.3 | 126 | 8.8 | 46.5 | 109.1 |
X-Tiny | 50.3 | 1143 | 1.4 | 5.1 | 6.5 |
X-L | 68.0 | 103 | 10.6 | 54.2 | 155.6 |
PPE-L | 68.6 | 127 | 10.1 | 52.2 | 110.1 |
v6-N | 51.2 | 1234 | 4.3 | 11.1 | 26.3 |
v6-L-ReLU | 69.2 | 149 | 58.5 | 144.0 | 354.2 |
v6-L | 70.0 | 121 | 58.5 | 144.0 | 354.2 |
v7-Tiny | 49.9 | 1196 | 6.2 | 5.8 | 8.8 |
Model | Size (Pixels) | Param. | FLOPs | |||
---|---|---|---|---|---|---|
YOLOv9-S | 640 | 46.8% | 63.4% | 50.7% | 7.2 M | 26.7 G |
YOLOv9-M | 640 | 51.4% | 68.1% | 56.1% | 20.1 M | 76.8 G |
YOLOv9-C | 640 | 53.0% | 70.2% | 57.8% | 25.5 M | 102.8 G |
YOLOv9-E | 640 | 55.6% | 72.8% | 60.6% | 58.1 M | 192.5 G |
Model | Size (Pixels) | (%) | FLOPs (G) | Latency (ms) |
---|---|---|---|---|
YOLOv10-N | 640 | 38.5 | 6.7 | 1.84 |
YOLOv10-S | 640 | 46.3 | 21.6 | 2.49 |
YOLOv10-M | 640 | 51.1 | 59.1 | 4.74 |
YOLOv10-B | 640 | 52.5 | 92.0 | 5.74 |
YOLOv10-L | 640 | 53.2 | 120.3 | 7.28 |
YOLOv10-X | 640 | 54.4 | 160.4 | 10.70 |
Metric | GPUs | FPGAs | ASICs |
---|---|---|---|
Energy Efficiency | Low | Medium | High |
Ability to Reconfigure | Low | High | Low |
Area | Large | Large | Small |
Digital Signal Processing Blocks | - | Fixed Precision | Custom |
Power | High | Medium | Low |
Time to Market | Low | Medium | High |
[141] | [142] | [143] | [144] | |
---|---|---|---|---|
Domain | Detection | Detection | Segment | Detection |
Dataset Size | 19,717 | 2094 | 75 | 2034 |
Classes | 2 | 5 | 1 | 2 |
Detector | Single stage | Two stage | Two stage | Single stage |
[email protected] (IoU) | 92.7% | 91.1% | 93.45% | 96.8% |
Application | References |
---|---|
Metal Surface Defect Detection | Tao et al. (2018) [145], Xu et al. (2021) [146], Lin et al. (2021) [147] |
Electronic Component Defect Detection | Xin et al. (2021) [148], Jeon et al. (2022) [149], Santoso et al. (2022) [150] |
Optical Fiber Defect Detection | Wang et al. (2019) [151], Mei et al. (2021) [152] |
Wheel Hub Surface Defect Detection | Han et al. (2017) [153], Sun et al. (2019) [154], Cheng et al. (2023) [155] |
Diode Chip Defect Detection | Lin et al. (2019) [156], Stern et al. (2021) [157], Zheng et al. (2023) [158] |
Bottle Mouth Defect Detection | Koodtalang et al. (2019) [159], Zhang et al. (2021) [160], Gizaw et al. (2022) [161] |
Precision Parts Defect Detection | Qu et al. (2018) [162] |
Varistor Defect Detection | Yang et al. (2019) [163], Yang et al. (2020) [164] |
Ceramic Defect Detection | Stephen et al. (2021) [165], Lu et al. (2022) [166], Wan et al. (2022) [167] |
Wood Defect Detection | Shi et al. (2020) [168], Chen et al. (2022) [169], Lim et al. (2023) [170] |
LCD and Touch Display Defect Detection | Qi et al. (2020) [18] |
Magnetic Tile Surface Defect Detection | Huang et al. (2020) [171] |
Rail Surface Defect Detection | Soukup et al. (2014) [172] |
Concrete and Steel Surface Crack Detection | Cha and Choi (2017) [173] |
Structural Visual Inspection | Cha et al. (2018) [174] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, M. Sustainable Machine Vision for Industry 4.0: A Comprehensive Review of Convolutional Neural Networks and Hardware Accelerators in Computer Vision. AI 2024, 5, 1324-1356. https://doi.org/10.3390/ai5030064
Hussain M. Sustainable Machine Vision for Industry 4.0: A Comprehensive Review of Convolutional Neural Networks and Hardware Accelerators in Computer Vision. AI. 2024; 5(3):1324-1356. https://doi.org/10.3390/ai5030064
Chicago/Turabian StyleHussain, Muhammad. 2024. "Sustainable Machine Vision for Industry 4.0: A Comprehensive Review of Convolutional Neural Networks and Hardware Accelerators in Computer Vision" AI 5, no. 3: 1324-1356. https://doi.org/10.3390/ai5030064
APA StyleHussain, M. (2024). Sustainable Machine Vision for Industry 4.0: A Comprehensive Review of Convolutional Neural Networks and Hardware Accelerators in Computer Vision. AI, 5(3), 1324-1356. https://doi.org/10.3390/ai5030064