Undamped Free Vibration Analysis of Functionally Graded Beams: A Dynamic Finite Element Approach
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Niino, M.; Hirai, T.; Watanabe, R. Functionally gradient materials. In pursuit of super heat resisting materials for spacecraft. J. Jpn. Soc. Compos. Mater. 1987, 13, 257–264. [Google Scholar] [CrossRef]
- Mahamood, R.M.; Akinlabi, E.T. Laser metal deposition of functionally graded Ti6Al4V/TiC. Mater. Des. 2015, 84, 402–410. [Google Scholar] [CrossRef]
- Taminger, K.M.B.; Hafley, R.A. Electron Beam Freeform Fabrication: A Rapid Metal Deposition Process. In Proceedings of the 3rd Annual Automotive Composites Conference, Hampton, VA, USA, 9–10 September 2003. [Google Scholar]
- Li, L.; Syed, W.U.H.; Pinkerton, A.J. Rapid additive manufacturing of functionally graded structures using simultaneous wire and powder laser deposition. Virtual Phys. Prototyp. 2006, 1, 217–225. [Google Scholar] [CrossRef]
- Akbaş, Ş.D.; Fageehi, Y.A.; Assie, A.E.; Eltaher, M.A. Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse load. Eng. Comput. 2022, 38, 365–377. [Google Scholar] [CrossRef]
- Esen, I.; Koc, M.A.; Cay, Y. Finite element formulation and analysis of a functionally graded Timoshenko beam subjected to an accelerating mass including inertial effects of the mass. Lat. Am. J. Solids Struct. 2018, 15, 1–18. [Google Scholar] [CrossRef]
- Esen, I.; Koc, M.A.; Eroğlu, M. Dynamic behaviour of functionally graded Timoshenko beams on a four parameter linear elastic foundation due to a high speed travelling mass with variable velocities. J. Smart Syst. Res. 2021, 2, 48–75. [Google Scholar]
- Koç, M.A. Finite element and numerical vibration analysis of a Timoshenko and Euler–Bernoulli beams traversed by a moving high-speed train. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 165. [Google Scholar] [CrossRef]
- Şimşek, M. Vibration analysis of a functionally graded beam under a moving mass by using different beam theories. Compos. Struct. 2010, 92, 904–917. [Google Scholar] [CrossRef]
- Al-Zahrani, M.A.; Asiri, S.A.; Ahmed, K.I.; Eltaher, M.A. Free Vibration Analysis of 2D Functionally Graded Strip Beam using Finite Element Method. J. Appl. Comput. Mech. 2022, 8, 1422–1430. [Google Scholar]
- Giunta, G.; Crisafulli, D.; Belouettar, S.; Carrera, E. Hierarchical theories for the free vibration analysis of functionally graded beams. Compos. Struct. 2011, 94, 68–74. [Google Scholar] [CrossRef]
- Neamah, R.A.; Nassar, A.A.; Alansari, L.S. Modeling and Analyzing the Free Vibration of Simply Supported Functionally Graded Beam. J. Aerosp. Technol. Manag. 2022, 14. [Google Scholar] [CrossRef]
- Aubad, M.J.; Khafaji, S.O.W.; Hussein, M.T.; Al-Shujairi, M.A. Modal analysis and transient response of axially functionally graded (AFG) beam using finite element method. Mater. Res. Express 2019, 6, 1065g4. [Google Scholar] [CrossRef]
- Kahya, V.; Turan, M. Finite element model for vibration and buckling of functionally graded beams based on the first-order shear deformation theory. Compos. Part B Eng. 2017, 109, 108–115. [Google Scholar] [CrossRef]
- Kahya, V.; Turan, M. Vibration and stability analysis of functionally graded sandwich beams by a multi-layer finite element. Compos. Part B Eng. 2018, 146, 198–212. [Google Scholar] [CrossRef]
- Rahmani, F.; Kamgar, R.; Rahgozar, R. Finite element analysis of functionally graded beams using different beam theories. Civ. Eng. J. 2020, 6, 2086–2102. [Google Scholar] [CrossRef]
- Yarasca, J.; Mantari, J.L.; Arciniega, R.A. Hermite–Lagrangian finite element formulation to study functionally graded sandwich beams. Compos. Struct. 2016, 140, 567–581. [Google Scholar] [CrossRef]
- Pradhan, K.K.; Chakraverty, S. Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh–Ritz method. Compos. Part B Eng. 2013, 51, 175–184. [Google Scholar] [CrossRef]
- Wattanasakulpong, N.; Mao, Q. Dynamic response of Timoshenko functionally graded beams with classical and non-classical boundary conditions using Chebyshev collocation method. Compos. Struct. 2015, 119, 346–354. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, Y.; Guo, M. A novel approach for free vibration of axially functionally graded beams with non-uniform cross-section based on Chebyshev polynomials theory. Compos. Struct. 2017, 168, 277–284. [Google Scholar] [CrossRef]
- Su, H.; Banerjee, J.R.; Cheung, C.W. Dynamic stiffness formulation and free vibration analysis of functionally graded beams. Compos. Struct. 2013, 106, 854–862. [Google Scholar] [CrossRef]
- Su, H.; Banerjee, J.R. Development of dynamic stiffness method for free vibration of functionally graded Timoshenko beams. Comput. Struct. 2015, 147, 107–116. [Google Scholar] [CrossRef]
- Banerjee, J.R.; Ananthapuvirajah, A. Free vibration of functionally graded beams and frameworks using the dynamic stiffness method. J. Sound Vib. 2018, 422, 34–47. [Google Scholar] [CrossRef]
- Rajasekaran, S. Buckling and vibration of axially functionally graded nonuniform beams using differential transformation based dynamic stiffness approach. Meccanica 2013, 48, 1053–1070. [Google Scholar] [CrossRef]
- Deng, H.; Cheng, W. Dynamic characteristics analysis of bi-directional functionally graded Timoshenko beams. Compos. Struct. 2016, 141, 253–263. [Google Scholar] [CrossRef]
- Banerjee, J.R. Dynamic stiffness formulation for structural elements: A general approach. Comput. Struct. 1997, 63, 101–103. [Google Scholar] [CrossRef]
- Banerjee, J.R.; Sobey, A.J.; Su, H.; Fitch, J.P. Use of computer algebra in Hamiltonian calculations. Adv. Eng. Softw. 2008, 39, 521–525. [Google Scholar] [CrossRef]
- Hashemi, S.M. Free Vibrational Analysis of Rotating Beam-Like Structures: A Dynamic Finite Element Approach. Ph.D. Dissertation, Department of Mechanical Engineering, Lavel University, Quebec, QC, Canada, 1998. [Google Scholar]
- Hashemi, S.M.; Richard, M.J. A Dynamic Finite Element (DFE) method for free vibrations of bending-torsion coupled beams. Aerosp. Sci. Technol. 2000, 4, 41–55. [Google Scholar] [CrossRef]
- Hashemi, S.M.; Adique, E.J. A Quasi-Exact Dynamic Finite Element for Free Vibration Analysis of Sandwich Beams. Appl. Compos. Mater. 2010, 17, 259–269. [Google Scholar] [CrossRef]
- Erdelyi, N.H.; Hashemi, S.M. A Dynamic Stiffness Element for Free Vibration Analysis of Delaminated Layered Beams. Model. Simul. Eng. 2012, 2012, 2. [Google Scholar] [CrossRef] [Green Version]
- Kashani, M.T.; Jayasinghe, S.; Hashemi, S.M. Dynamic finite element analysis of bending-torsion coupled beams subjected to combined axial load and end moment. Shock. Vib. 2015, 2015, 471270. [Google Scholar] [CrossRef] [Green Version]
- Erdelyi, N.H.; Hashemi, S.M. On the Finite Element Free Vibration Analysis of Delaminated Layered Beams—A New Assembly Technique. Shock. Vib. 2016, 2016, 3707658. [Google Scholar] [CrossRef] [Green Version]
- Borneman, S.R.; Hashemi, S.M. Vibration-Based, Nondestructive Methodology for Detecting Multiple Cracks in Bending-Torsion Coupled Laminated Composite Beams. Shock. Vib. 2018, 2018, 9628141. [Google Scholar] [CrossRef]
- Kashani, M.T.; Hashemi, S.M. A Finite Element Formulation for Bending–Torsion Coupled Vibration Analysis of Delaminated Beams Subjected to Combined Axial Load and End Moment. Shock. Vib. 2018, 2018, 1348970, Special Issue on SHMV. [Google Scholar] [CrossRef] [Green Version]
- Kashani, M.T.; Hashemi, S.M. Dynamic Finite Element Modelling and Vibration Analysis of Prestressed Layered Bending–Torsion Coupled Beams. Appl. Mech. 2022, 3, 103–120. [Google Scholar] [CrossRef]
- Tse, F.S.; Morse, I.E.; Hinkle, R.T.; Hinkle, R.T.; Morse, I.E. Mechanical Vibrations: Theory and Applications, 2nd ed.; Tse, F.S., Morse, I.E., Hinkle, R.T., Hinkle, R.T., Morse, I.E., Eds.; Allyn and Bacon: Boston, MA, USA, 1978; ISBN 0-205-05940-6. [Google Scholar]
Frequency No. i | L/h | ||||||
---|---|---|---|---|---|---|---|
Classical Results [27] | DSM Ref [13] | DSM Code | DFE (1 ELE) | DFE (3 ELE) | FEM (10 ELE) | ||
1 | 10 | 9.8696 | 9.8293 | 9.8293 | 9.8293 | 9.8293 | 9.8293 |
30 | 9.8696 | 9.8651 | 9.8651 | 9.8651 | 9.8651 | 9.8652 | |
100 | 9.8696 | 9.8692 | 9.8692 | 9.8692 | 9.8692 | 9.8693 | |
2 | 10 | 39.478 | 38.845 | 38.845 | 38.845 | 38.845 | 38.849 |
30 | 39.478 | 39.406 | 39.406 | 39.406 | 39.406 | 39.411 | |
100 | 39.478 | 39.472 | 39.472 | 39.472 | 39.472 | 39.476 | |
3 | 10 | 88.826 | 85.711 | 85.711 | 85.711 | 85.711 | 85.757 |
30 | 88.826 | 88.463 | 88.463 | 88.463 | 88.462 | 88.511 | |
100 | 88.826 | 88.794 | 88.794 | 88.794 | 88.794 | 88.841 |
Frequency No. i | L/h | ||||||
---|---|---|---|---|---|---|---|
Classical Results [27] | DSM Ref [12] | DSM Code | DFE (1 ELE) | DFE (3 ELE) | FEM (10 ELE) | ||
1 | 10 | 22.373 | 22.259 | 22.259 | 22.259 | 22.259 | 22.260 |
30 | 22.373 | 22.361 | 22.361 | 22.361 | 22.361 | 22.361 | |
100 | 22.373 | 22.372 | 22.372 | 22.373 | 22.372 | 22.373 | |
2 | 10 | 61.673 | 60.522 | 60.522 | 60.522 | 60.522 | 60.538 |
30 | 61.673 | 61.542 | 61.542 | 61.542 | 61.542 | 61.558 | |
100 | 61.673 | 61.673 | 61.661 | 61.661 | 61.660 | 61.661 | |
3 | 10 | 120.90 | 116.21 | 116.21 | 116.21 | 116.21 | 116.32 |
30 | 120.90 | 120.35 | 120.35 | 120.35 | 120.35 | 120.47 | |
100 | 120.90 | 120.85 | 120.85 | 120.86 | 120.85 | 120.97 |
Frequency No. i | L/h | ||||||
---|---|---|---|---|---|---|---|
Classical Results [27] | DSM Ref [12] | DSM Code | DFE (1 ELE) | DFE (3 ELE) | FEM (10 ELE) | ||
1 | 10 | 3.5160 | 3.5092 | 3.5092 | 3.5092 | 3.5092 | 3.5092 |
30 | 3.5160 | 3.5153 | 3.5153 | 3.5153 | 3.5153 | 3.5153 | |
100 | 3.5160 | 3.5160 | 3.5159 | 3.5159 | 3.5159 | 3.5159 | |
2 | 10 | 22.035 | 21.743 | 21.743 | 21.743 | 21.743 | 21.743 |
30 | 22.035 | 22.002 | 22.002 | 22.001 | 22.001 | 22.002 | |
100 | 22.035 | 22.032 | 22.032 | 22.032 | 22.032 | 22.032 | |
3 | 10 | 61.677 | 59.801 | 59.801 | 59.801 | 59.801 | 59.816 |
30 | 61.677 | 61.478 | 61.478 | 61.478 | 61.478 | 61.493 | |
100 | 61.677 | 61.677 | 61.677 | 61.677 | 61.677 | 61.693 |
Frequency No. i | L/h | ||||||
---|---|---|---|---|---|---|---|
Classical Results [27] | DSM Ref [12] | DSM Code | DFE (1 ELE) | DFE (3 ELE) | FEM (10 ELE) | ||
1 | 10 | 15.418 | 15.345 | 15.345 | 15.345 | 15.345 | 15.345 |
30 | 15.418 | 15.410 | 15.410 | 15.410 | 15.410 | 15.410 | |
100 | 15.418 | 15.418 | 15.417 | 15.417 | 15.417 | 15.418 | |
2 | 10 | 49.965 | 49.095 | 49.095 | 49.095 | 49.095 | 49.103 |
30 | 49.965 | 49.866 | 49.866 | 49.866 | 49.866 | 48.875 | |
100 | 49.965 | 49.956 | 49.956 | 49.956 | 49.956 | 49.965 | |
3 | 10 | 104.25 | 100.39 | 100.39 | 100.39 | 100.39 | 100.46 |
30 | 104.25 | 103.80 | 103.80 | 103.80 | 103.80 | 103.87 | |
100 | 104.25 | 104.21 | 104.21 | 104.21 | 104.21 | 104.28 |
L/h | |||||||
---|---|---|---|---|---|---|---|
Ref [25] | DSM Ref [13] | DSM (1 ELE) | DFE (1 ELE) | DFE (3 ELE) | FEM (3 ELE) | ||
Euler-Bernoulli | Timoshenko | ||||||
10 | 17.329 | 17.138 | 17.614 | 17.328 | 17.378 | 17.350 | 17.365 |
30 | 17.392 | 17.373 | 17.676 | 17.395 | 17.447 | 17.420 | 17.433 |
100 | 17.405 | 17.398 | 17.684 | 17.402 | 17.455 | 17.430 | 17.441 |
Frequency No. i | |||||||||
---|---|---|---|---|---|---|---|---|---|
k = 0.1 | k = 1 | k = 5 | |||||||
DSM Code (1 ELE) | DFE (10 ELE) | FEM (10 ELE) | DSM Code (1 ELE) | DFE (10 ELE) | FEM (10 ELE) | DSM Code (1 ELE) | DFE (10 ELE) | FEM (10 ELE) | |
1 | 6.2673 | 6.2673 | 6.2673 | 4.7669 | 4.7672 | 4.7672 | 4.0493 | 4.0495 | 4.0495 |
2 | 39.272 | 39.272 | 39.274 | 29.870 | 29.883 | 29.883 | 25.374 | 25.381 | 25.382 |
3 | 109.92 | 109.95 | 109.97 | 83.599 | 83.703 | 83.722 | 71.014 | 71.085 | 71.102 |
4 | 215.38 | 215.40 | 215.60 | 163.81 | 164.11 | 164.26 | 139.16 | 139.34 | 139.47 |
Frequency No. i | |||||||||
---|---|---|---|---|---|---|---|---|---|
k = 0.1 | k = 1 | k = 5 | |||||||
DSM Code (1 ELE) | DFE (10 ELE) | FEM (10 ELE) | DSM Code (1 ELE) | DFE (10 ELE) | FEM (10 ELE) | DSM Code (1 ELE) | DFE (10 ELE) | FEM (10 ELE) | |
1 | 17.592 | 17.592 | 17.592 | 13.381 | 13.382 | 13.382 | 11.366 | 11.367 | 11.367 |
2 | 70.360 | 70.361 | 70.367 | 53.515 | 53.542 | 53.547 | 45.459 | 45.476 | 45.481 |
3 | 158.28 | 158.28 | 158.37 | 120.38 | 120.51 | 120.58 | 102.26 | 102.34 | 102.40 |
4 | 281.30 | 281.32 | 281.78 | 213.94 | 214.36 | 214.69 | 181.74 | 182.00 | 182.29 |
Frequency No. i | |||||||||
---|---|---|---|---|---|---|---|---|---|
k = 0.1 | k = 1 | k = 5 | |||||||
DSM Code (1 ELE) | DFE (10 ELE) | FEM (10 ELE) | DSM Code (1 ELE) | DFE (10 ELE) | FEM (10 ELE) | DSM Code (1 ELE) | DFE (10 ELE) | FEM (10 ELE) | |
1 | 39.872 | 39.872 | 39.881 | 30.326 | 30.333 | 30.352 | 25.761 | 25.766 | 25.778 |
2 | 109.89 | 109.88 | 109.95 | 83.576 | 83.627 | 83.734 | 70.997 | 71.027 | 71.103 |
3 | 215.35 | 215.36 | 215.66 | 163.79 | 164.00 | 164.38 | 139.13 | 139.27 | 139.56 |
4 | 355.83 | 355.85 | 356.99 | 270.63 | 271.21 | 272.40 | 229.90 | 230.27 | 231.19 |
Frequency No. i | |||||||||
---|---|---|---|---|---|---|---|---|---|
k = 0.1 | k = 1 | k = 5 | |||||||
DSM Code (1 ELE) | DFE (10 ELE) | FEM (10 ELE) | DSM Code (1 ELE) | DFE (10 ELE) | FEM (10 ELE) | DSM Code (1 ELE) | DFE (10 ELE) | FEM (10 ELE) | |
1 | 27.485 | 27.485 | 27.485 | 20.947 | 20.954 | 20.955 | 17.783 | 17.788 | 17.788 |
2 | 89.050 | 89.053 | 89.069 | 67.770 | 67.832 | 67.842 | 57.560 | 57.597 | 57.607 |
3 | 185.75 | 185.77 | 185.90 | 141.32 | 141.56 | 141.66 | 120.04 | 120.19 | 120.27 |
4 | 317.55 | 317.59 | 318.25 | 241.55 | 242.21 | 242.70 | 205.20 | 205.60 | 206.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gee, A.; Hashemi, S.M. Undamped Free Vibration Analysis of Functionally Graded Beams: A Dynamic Finite Element Approach. Appl. Mech. 2022, 3, 1223-1239. https://doi.org/10.3390/applmech3040070
Gee A, Hashemi SM. Undamped Free Vibration Analysis of Functionally Graded Beams: A Dynamic Finite Element Approach. Applied Mechanics. 2022; 3(4):1223-1239. https://doi.org/10.3390/applmech3040070
Chicago/Turabian StyleGee, Aaron, and Seyed M. Hashemi. 2022. "Undamped Free Vibration Analysis of Functionally Graded Beams: A Dynamic Finite Element Approach" Applied Mechanics 3, no. 4: 1223-1239. https://doi.org/10.3390/applmech3040070
APA StyleGee, A., & Hashemi, S. M. (2022). Undamped Free Vibration Analysis of Functionally Graded Beams: A Dynamic Finite Element Approach. Applied Mechanics, 3(4), 1223-1239. https://doi.org/10.3390/applmech3040070