Analysis of Acid Diffusion Effects on Physical Properties of Polymer Composites: A Combined Study of Mechanical and Electrical Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Methods
- Indenter pecks the surface;
- Load phase up until the maximum load (1000 mN);
- Hold the load;
- Unload phase.
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Goyal, R.K. Nanomaterials and Nanocomposites: Synthesis, Properties, Characterization Techniques, and Applications; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781498761673. [Google Scholar]
- Loos, M. Carbon Nanotube Reinforced Composites, 1st ed.; William Andrew: Oxford, UK, 2015; Volume 3, ISBN 9781455778980. [Google Scholar]
- Kar, K.; Pandey, J.; Rana, S. (Eds.) Handbook of Polymer Nanocomposites. Processing, Performance and Application Volume B Carbon Nanotube Based Polymer Composites; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Ren, X.; Burton, J.; Seidel, G.D.; Lafdi, K. Computational Multiscale Modeling and Characterization of Piezoresistivity in Fuzzy Fiber Reinforced Polymer Composites. Int. J. Solids Struct. 2015, 54, 121–134. [Google Scholar] [CrossRef]
- Tanks, J.D.; Arao, Y.; Kubouchi, M. Diffusion Kinetics, Swelling, and Degradation of Corrosion-Resistant C-Glass/Epoxy Woven Composites in Harsh Environments. Compos. Struct. 2018, 202, 686–694. [Google Scholar] [CrossRef]
- Gotou, T.; Noda, M.; Tomiyama, T.; Sembokuya, H.; Kubouchi, M.; Tsuda, K. In Situ Health Monitoring of Corrosion Resistant Polymers Exposed to Alkaline Solutions Using PH Indicators. Sens. Actuators B Chem. 2006, 119, 27–32. [Google Scholar] [CrossRef]
- Liu, C.; Lafdi, K. Environmental Monitoring of Composite Durability Use Multiple Sensing Technologies. In Proceedings of the Composites and Advanced Materials Expo, Dallas, TX, USA, 18 October 2018. [Google Scholar]
- Liu, Y.; Kubouchi, M.; Sembokuya, H.; Tsuda, K.; Tomiyama, T. On-Line Monitoring of Epoxy Resin Exposed to Acid Solution. J. Mater. Sci. Technol. 2006, 22, 414–418. [Google Scholar]
- Liu, C.; Sergeichev, I.; Akhatov, I.; Lafdi, K. CNT and Polyaniline Based Sensors for the Detection of Acid Penetration in Polymer Composite. Compos. Sci. Technol. 2018, 159, 111–118. [Google Scholar] [CrossRef]
- Liu, C.; Lafdi, K.; Chinesta, F. Durability Sensor Using Low Concentration Carbon Nano Additives. Compos. Sci. Technol. 2020, 195, 108200. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion; Oxford Science Publications: Oxford, UK, 1975. [Google Scholar]
- Abastari; Sakai, T.; Sembokuya, H.; Kubouchi, M.; Tsuda, K. Study on Permeation Behavior and Chemical Degradation of PA66 in Acid Solution. Polym. Degrad. Stab. 2007, 92, 379–388. [Google Scholar] [CrossRef]
- La Saponara, V. Environmental and Chemical Degradation of Carbon/Epoxy and Structural Adhesive for Aerospace Applications: Fickian and Anomalous Diffusion, Arrhenius Kinetics. Compos. Struct. 2011, 93, 2180–2195. [Google Scholar] [CrossRef]
- Starkova, O.; Buschhorn, S.T.; Mannov, E.; Schulte, K.; Aniskevich, A. Water Transport in Epoxy/MWCNT Composites. Eur. Polym. J. 2013, 49, 2138–2148. [Google Scholar] [CrossRef]
- Benyahia, H.; Tarfaoui, M.; Datsyuk, V.; El Moumen, A.; Trotsenko, S.; Reich, S. Dynamic Properties of Hybrid Composite Structures Based Multiwalled Carbon Nanotubes. Compos. Sci. Technol. 2017, 148, 70–79. [Google Scholar] [CrossRef]
- Tarfaoui, M.; Lafdi, K.; El Moumen, A. Mechanical Properties of Carbon Nanotubes Based Polymer Composites. Compos. Part B Eng. 2016, 103, 113–121. [Google Scholar] [CrossRef]
- Beaumont, P.W.R.; Soutis, C. Structural Integrity of Engineering Composite Materials: A Cracking Good Yarn. Philos. Trans. R. Soc. A 2016, 374, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Shull, P.J. Nondestrutive Evaluation Theory, Techniques and Applications; Marcel Dekker Inc.: New York, NY, USA, 2002; ISBN 0824788729. [Google Scholar]
- Balageas, D.; Fritzen, C.-P.; Güemes, A. Structural Health Monitoring; ISTE: Londond, UK, 2006; ISBN 9780470741337. [Google Scholar]
- Güemes, A.; Fernandez-Lopez, A.; Pozo, A.R.; Sierra-Peréz, J. Structural Health Monitoring for Advanced Composite Structures: A Review. J. Compos. Sci. 2020, 4, 13. [Google Scholar] [CrossRef]
- Raju, R. Structural Health Monitoring of Composites for Aircraft Structures. In Proceedings of the International Conference on Advancements and Futuristic Trends in Mechanical and Materials Engineering, Kapurthala, India, 16–18 October 2014. [Google Scholar]
- Boller, C.; Chang, F.-K.; Fujino, Y. Encyclopedia of Structural Health Monitoring; Wiley: Hoboken, NJ, USA, 2009; ISBN 9780470058220. [Google Scholar]
- Tamayo-Vegas, S.; Lafdi, K. A Literature Review of Non-Contact Tools and Methods in Structural Health Monitoring. Eng. Technol. Open Access J. 2021, 4, 555626. [Google Scholar] [CrossRef]
- Tamayo-Vegas, S.; Lafdi, K.; Elsdon, M. A Contactless Characterization of CNT/Epoxy Nanocomposites Behavior under Acid Exposure. Compos. Struct. 2023, 305, 116508. [Google Scholar] [CrossRef]
- Al Habis, N.; Liu, C.; Dumuids, J.B.; Lafdi, K. Intelligent Design of Conducting Network in Polymers Using Numerical and Experimental Approaches. RSC Adv. 2016, 6, 95010–95020. [Google Scholar] [CrossRef]
- Tjong, S.C. Electrical and Dielectric Behavior of Carbon Nanotube-Filled Polymer Composites; Woodhead Publishing Limited: Sawston, UK, 2010; ISBN 9781845696726. [Google Scholar]
- Bauhofer, W.; Kovacs, J.Z. A Review and Analysis of Electrical Percolation in Carbon Nanotube Polymer Composites. Compos. Sci. Technol. 2009, 69, 1486–1498. [Google Scholar] [CrossRef]
- Kovacs, J.Z.; Velagala, B.S.; Schulte, K.; Bauhofer, W. Two Percolation Thresholds in Carbon Nanotube Epoxy Composites. Compos. Sci. Technol. 2007, 67, 922–928. [Google Scholar] [CrossRef]
- Sandler, J.; Shaffer, M.S.P.; Prasse, T.; Bauhofer, W.; Schulte, K.; Windle, A.H. Development of a Dispersion Process for Carbon Nanotubes in an Epoxy Matrix and the Resulting Electrical Properties. Polymer 1999, 40, 5967–5971. [Google Scholar] [CrossRef]
- Khammassi, S.; Tarfaoui, M.; Lafdi, K. Study of Mechanical Performance of Polymer Nanocomposites Reinforced with Exfoliated Graphite of Different Mesh Sizes Using Micro-Indentation. J. Compos. Mater. 2021, 55, 2617–2629. [Google Scholar] [CrossRef]
- Tamayo-Vegas, S.; Muhsan, A.; Liu, C.; Tarfaoui, M.; Lafdi, K. The Effect of Agglomeration on the Electrical and Mechanical Properties of Polymer Matrix Nanocomposites Reinforced with Carbon Nanotubes. Polymers 2022, 14, 1842. [Google Scholar] [CrossRef] [PubMed]
- Minelli, M.; Baschetti, M.G.; Doghieri, F. Analysis of Modeling Results for Barrier Properties in Ordered Nanocomposite Systems. J. Membr. Sci. 2009, 327, 208–215. [Google Scholar] [CrossRef]
- Gomasang, P.; Kawahara, K.; Yasuraoka, K.; Maruyama, M.; Ago, H.; Okada, S.; Ueno, K. A Novel Graphene Barrier against Moisture by Multiple Stacking Large-Grain Graphene. Sci. Rep. 2019, 9, 3777. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, S. Percolation and Conduction. Rev. Mod. Phys. 1973, 45, 574–588. [Google Scholar] [CrossRef]
- Stauffer, D.; Aharony, A. Introduction to Percolation Theory; Taylor & Francis: London, UK, 1994. [Google Scholar]
- Du, F.; Scogna, R.C.; Zhou, W.; Brand, S.; Fischer, J.E.; Winey, K.I. Nanotube Networks in Polymer Nanocomposites: Rheology and Electrical Conductivity. Macromolecules 2004, 37, 9048–9055. [Google Scholar] [CrossRef]
- Hu, N.; Masuda, Z.; Yan, C.; Yamamoto, G.; Fukunaga, H.; Hashida, T. The Electrical Properties of Polymer Nanocomposites with Carbon Nanotube Fillers. Nanotechnology 2008, 19, 21. [Google Scholar] [CrossRef]
- Duong, H.M.; Tran, T.Q.; Kopp, R.; Myint, S.M.; Peng, L. Direct Spinning of Horizontally Aligned Carbon Nanotube Fibers and Films from the Floating Catalyst Method. In Nanotube Superfiber Materials: Science, Manufacturing, Commercialization; Elsevier: Amsterdam, The Netherlands, 2019; pp. 3–29. ISBN 9780128126677. [Google Scholar]
- Duong, H.M.; Myint, S.M.; Tran, T.Q.; Le, D.K. Post-Spinning Treatments to Carbon Nanotube Fibers. In Carbon Nanotube Fibres and Yarns: Production, Properties and Applications in Smart Textiles; Elsevier: Amsterdam, The Netherlands, 2019; pp. 103–134. ISBN 9780081027226. [Google Scholar]
- Tarfaoui, M.; El Moumen, A.; Lafdi, K. Progressive Damage Modeling in Carbon Fibers/Carbon Nanotubes Reinforced Polymer Composites. Compos. Part B Eng. 2017, 112, 185–195. [Google Scholar] [CrossRef]
- Maghsoudlou, M.A.; Barbaz Isfahani, R.; Saber-Samandari, S.; Sadighi, M. Effect of Interphase, Curvature and Agglomeration of SWCNTs on Mechanical Properties of Polymer-Based Nanocomposites: Experimental and Numerical Investigations. Compos. Part B Eng. 2019, 175, 107119. [Google Scholar] [CrossRef]
- Zare, Y. Study of Nanoparticles Aggregation/Agglomeration in Polymer Particulate Nanocomposites by Mechanical Properties. Compos. Part A Appl. Sci. Manuf. 2016, 84, 158–164. [Google Scholar] [CrossRef]
- Tamayo-Vegas, S.; Muhsan, A.; Chang, L.; Tarfaoui, M.; Lafdi, K. Effect of CNT Additives on the Electrical Properties of Derived Nanocomposites (Experimentally and Numerical Investigation). Mater. Today Proc. 2021, 52, 199–205. [Google Scholar] [CrossRef]
- Monticeli, F.M.; Montoro, S.R.; Voorwald, H.J.C.; Cioffi, M.O.H. Porosity Characterization of Carbon Fiber/Epoxy Composite Using Hg Porosimetry and Other Techniques. Polym. Eng. Sci. 2020, 60, 841–849. [Google Scholar] [CrossRef]
- Fang, Q.; Lafdi, K. Effect of Nanofiller Morphology on the Electrical Conductivity of Polymer Nanocomposites. Nano Express 2021, 2, 010019. [Google Scholar] [CrossRef]
- Govorov, A.; Wentzel, D.; Miller, S.; Kanaan, A.; Sevostianov, I. Electrical Conductivity of Epoxy-Graphene and Epoxy-Carbon Nanofibers Composites Subjected to Compressive Loading. Int. J. Eng. Sci. 2018, 123, 174–180. [Google Scholar] [CrossRef]
- Sahimi, M. Applications of Percolation Theory; Taylor & Francis: London, UK, 1995. [Google Scholar]
- Machrafi, H.; Lebon, G.; Iorio, C.S. Effect of Volume-Fraction Dependent Agglomeration of Nanoparticles on the Thermal Conductivity of Nanocomposites: Applications to Epoxy Resins, Filled by SiO2, AlN and MgO Nanoparticles. Compos. Sci. Technol. 2016, 130, 78–87. [Google Scholar] [CrossRef]
- Wee, F.H.; Soh, P.J.; Suhaizal, A.H.M.; Nornikman, H.; Ezanuddin, A.A.M. Free Space Measurement Technique on Dielectric Properties of Agricultural Residues at Microwave Frequencies. In Proceedings of the 2009 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Belem, Brazil, 3–6 November 2009; pp. 183–187. [Google Scholar] [CrossRef]
- Katsounaros, A.; Rajab, K.Z.; Hao, Y.; Mann, M.; Milne, W.I. Microwave Characterization of Vertically Aligned Multiwalled Carbon Nanotube Arrays. Appl. Phys. Lett. 2011, 98, 203105. [Google Scholar] [CrossRef]
- Xin, H.; Wang, L.; Carnahan, D. Characterization of Multi-Walled Carbon Nanotube (MWNT) Papers Using X-Band Waveguides. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, Honolulu, HI, USA, 3–8 June 2007; pp. 1181–1184. [Google Scholar] [CrossRef]
- Afsar, M.N.; Afsar, M.N.; Birch, J.R.; Clarke, R.N.; Chantry, G.W. The Measurement of the Properties of Materials. Proc. IEEE 1986, 74, 183–199. [Google Scholar] [CrossRef]
- Ghodgaonkar, D.K.; Varadan, V.V.; Varadan, V.K. A Free-Space Method for Measurement of Dielectric Constants and Loss Tangents at Microwave Frequencies. IEEE Trans. Instrum. Meas. 1989, 38, 789–793. [Google Scholar] [CrossRef]
- Wiesbeck, W.; Kahny, D. Single Reference, Three Target Calibration and Error Correction For Monostatic, Polarimetric Free Space Measurements. Proc. IEEE 1991, 79, 1551–1558. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamayo-Vegas, S.; Lafdi, K.; Tarfaoui, M.; Lafdi, K.K.; Daly, M. Analysis of Acid Diffusion Effects on Physical Properties of Polymer Composites: A Combined Study of Mechanical and Electrical Characterization. Appl. Mech. 2023, 4, 974-989. https://doi.org/10.3390/applmech4030050
Tamayo-Vegas S, Lafdi K, Tarfaoui M, Lafdi KK, Daly M. Analysis of Acid Diffusion Effects on Physical Properties of Polymer Composites: A Combined Study of Mechanical and Electrical Characterization. Applied Mechanics. 2023; 4(3):974-989. https://doi.org/10.3390/applmech4030050
Chicago/Turabian StyleTamayo-Vegas, Sebastian, Khalid Lafdi, Mostapha Tarfaoui, Khalil K. Lafdi, and Mohamed Daly. 2023. "Analysis of Acid Diffusion Effects on Physical Properties of Polymer Composites: A Combined Study of Mechanical and Electrical Characterization" Applied Mechanics 4, no. 3: 974-989. https://doi.org/10.3390/applmech4030050
APA StyleTamayo-Vegas, S., Lafdi, K., Tarfaoui, M., Lafdi, K. K., & Daly, M. (2023). Analysis of Acid Diffusion Effects on Physical Properties of Polymer Composites: A Combined Study of Mechanical and Electrical Characterization. Applied Mechanics, 4(3), 974-989. https://doi.org/10.3390/applmech4030050