Influence of Preheating Self-Adhesive Cements on the Degree of Conversion, Cell Migration, and Cell Viability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Degree of Conversion (DC)
2.2. Cytotoxicity Assay
2.2.1. Preparation of Test Specimens
2.2.2. Means of Cell Extraction
2.3. Cell Viability Testing
2.4. Cell Migration Assay
2.5. Statistical Analysis
3. Results
3.1. Degree of Conversion
3.2. Cell Viability
3.3. Cell Migration
4. Discussion
5. Conclusions
- All tested materials were strongly cytotoxic and exhibited a low degree of conversion.
- The Set PP resin cement showed an increase in cell viability when preheated to 39 °C, without any gains in the degree of conversion.
- As a clinical conclusion, preheating self-adhesive resin cement can be discarded, as it does not enhance the material’s properties and introduces an unnecessary additional step in the clinical workflow. Furthermore, due to the observed cytotoxicity, extra caution is advised when using these materials in cavities close to the pulp complex, to minimize potential adverse effects on patient health.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferracane, J.L.; Stansbury, J.W.; Burke, F.J. Self-adhesive resin cements—Chemistry, properties and clinical considerations. J. Oral Rehabil. 2011, 38, 295–314. [Google Scholar] [CrossRef]
- Manso, A.P.; Carvalho, R.M. Dental Cements for Luting and Bonding Restorations: Self-Adhesive Resin Cements. Dent. Clin. N. Am. 2017, 61, 821–834. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Arnold, A.M.; Vargas, M.A.; Haselton, D.R. Current status of luting agents for fixed prosthodontics. J. Prosthet. Dent. 1999, 81, 135–141. [Google Scholar] [CrossRef]
- Lanza, C.R.M.; De Souza Costa, C.A.; Furlan, M.; Alécio, A.; Hebling, J. Transdentinal diffusion and cytotoxicity of self-etching adhesive systems. Cell Biol. Toxicol. 2009, 25, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Gerzina, T.M.; Hume, W.R. Diffusion of monomers from bonding resin-resin composite combinations through dentine in vitro. J. Dent. 1996, 24, 125–128. [Google Scholar] [CrossRef] [PubMed]
- Bakopoulou, A.; Papadopoulos, T.; Garefis, P. Molecular toxicology of substances released from resin-based dental restorative materials. Int. J. Mol. Sci. 2009, 10, 3861–3899. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, R.; Leite, M.; Costa, C.d.S.; Hebling, J.; Anovazzi, G.; Klein, C.; Hosaka, K.; Reston, E. Effect of Time and Temperature of Air Jet on the Mechanical and Biological Behavior of a Universal Adhesive System. Oper. Dent. 2022, 47, 87–96. [Google Scholar] [CrossRef] [PubMed]
- D’Alpino, P.H.P.; Moura, G.E.D.d.D.; Barbosa, S.C.d.A.; Marques, L.d.A.; Eberlin, M.N.; Nascimento, F.D.; Tersariol, I.L.d.S. Differential cytotoxic effects on odontoblastic cells induced by self-adhesive resin cements as a function of the activation protocol. Dent. Mater. 2017, 33, 1402–1415. [Google Scholar] [CrossRef] [PubMed]
- Pameijer, C.H. Biocompatibility of luting cements for dental applications. In Biocompatibility of Dental Biomaterials; Woodhead Publishing Series/Elsevier in Biomaterials; Woodhead Publishing: Amsterdam, The Netherlands, 2017; pp. 77–94. [Google Scholar]
- Zabrovsky, A.; Beyth, N.; Pietrokovski, Y.; Ben-Gal, G.; Houri-Haddad, Y. Biocompatibility and functionality of dental restorative materials. In Biocompatibility of Dental Biomaterials; Woodhead Publishing Series/Elsevier in Biomaterials; Woodhead Publishing: Amsterdam, The Netherlands, 2017; pp. 63–75. [Google Scholar]
- Schmid-Schwap, M.; Franz, A.; König, F.; Bristela, M.; Lucas, T.; Piehslinger, E.; Watts, D.C.; Schedle, A. Cytotoxicity of four categories of dental cements. Dent. Mater. 2009, 25, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, M. In vitro and in vivo studies on the toxicity of dental resin components, a review. Clin. Oral Investig. 2008, 12, 1–8. [Google Scholar] [CrossRef] [PubMed]
- da Silva, D.C.; Vaz, L.G.; Tavares, W.L.F.; Vieira, L.Q.; de Oliveira, R.R.; Sobrinho, A.P.R. Cytotoxicity of two self-adhesive resin cements and their interference in the phagocytic activity of murine macrophages. Restor. Dent. Endod. 2022, 47, e31. [Google Scholar] [CrossRef] [PubMed]
- Kurt, A.; Altintas, S.H.; Kiziltas, M.V.; Tekkeli, S.E.; Guler, E.M.; Kocyigit, A.; Usumez, A. Evaluation of residual monomer release and toxicity of self-adhesive resin cements. Dent. Mater. J. 2018, 37, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Accorinte, M.L.; Loguercio, A.D.; Reis, A.; Muench, A.; de Araújo, V.C. Adverse effects of human pulps after direct pulp capping with the different components from a total-etch, three-step adhesive system. Dent. Mater. 2005, 21, 599–607. [Google Scholar] [CrossRef]
- Paranjpe, A.; Bordador, L.C.; Wang, M.Y.; Hume, W.R.; Jewett, A. Resin monomer 2-hydroxyethyl methacrylate (HEMA) is a potent inducer of apoptotic cell death in human and mouse cells. J. Dent. Res. 2005, 84, 172–177. [Google Scholar] [CrossRef]
- Vaz, R.R.; Hipolito, V.D.; D’Alpino, P.H.; Goes, M.F. Bond strength and interfacial micromorphology of etch-and-rinse and self-adhesive resin cements to dentin. J. Prosthodont. 2012, 21, 101–111. [Google Scholar] [CrossRef]
- Reis, A.; Wambier, L.; Malaquias, T.; Wambier, D.S.; Loguercio, A.D. Effects of warm air drying on water sorption, solubility, and adhesive strength of simplified etch-and-rinse adhesives. J. Adhes. Dent. 2013, 15, 41–46. [Google Scholar] [PubMed]
- Yonekura, K.; Hosaka, K.; Tichy, A.; Taguchi, K.; Ikeda, M.; Thanatvarakorn, O.; Prasansuttiporn, T.; Nakajima, M.; Tagami, J. Air-blowing strategies for improving the microtensile bond strength of one-step self-etch adhesives to root canal dentin. Dent. Mater. J. 2020, 39, 892–899. [Google Scholar] [CrossRef] [PubMed]
- Klein-Junior, C.; Zimmer, R.; Borghetti, D.; Portella, F.; Abich, F.; Marinowic, D.; Osaka, K.; Reston, E. Hot air stream reduces cytotoxicity of light-cured calcium hydroxide based cements. J. Clin. Exp. Dent. 2020, 12, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Fróes-Salgado, N.R.; Silva, L.M.; Kawano, Y.; Francci, C.; Reis, A.; Loguercio, A.D. Composite pre-heating: Effects on marginal adaptation, degree of conversion and mechanical properties. Dent. Mater. 2010, 26, 908–914. [Google Scholar] [CrossRef]
- Borghetti, D.L.; Zimmer, R.; Portella, F.F.; Reston, E.G.; Klein-Junior, C.A.; Marinowic, D.R.; Hosaka, K. Effect of preheating on cytotoxicity and physicochemical properties of light-cured calcium-based cements. Acta Odontol. Latinoam. 2020, 33, 82–89. [Google Scholar] [CrossRef]
- Cantoro, A.; Goracci, C.; Papacchini, F.; Mazzitelli, C.; Fadda, G.M.; Ferrari, M. Effect of pre-cure temperature on the bonding potential of self-etch and self-adhesive resin cements. Dent. Mater. 2008, 24, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Poubel, D.L.N.; Zanon, A.E.G.; Almeida, J.C.F.; Rezende, L.V.M.L.; Garcia, F.C.P. Composite resin preheating techniques for cementation of indirect restorations. Int. J. Biomater. 2022, 2022, 5935668. [Google Scholar]
- Yang, J.; Silikas, N.; Watts, D.C. Pre-heating time and exposure duration: Effects on post-irradiation properties of a thermo-viscous resin-composite. Dent. Mater. 2020, 36, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Klein-Júnior, C.A.; Zimmer, R.; Hentschke, G.S.; Machado, D.C.; dos Santos, R.B.; Reston, E.G. Effect of heat treatment on cytotoxicity of self-adhesive resin cements: Cell viability analysis. Eur. J. Dent. 2018, 12, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Bourgi, R.; Kharouf, N.; Cuevas-Suárez, C.E.; Lukomska-Szymanska, M.; Kharma, K.; Moussa, F.H.; Metlej, M.; Haikel, Y.; Hardan, L. Warm Air Delivery in Adhesive Application: Effect on Bonding Performance and Morphological Outcomes. Biomimetics 2024, 9, 194. [Google Scholar] [CrossRef] [PubMed]
- Collares, F.M.; Portella, F.F.; Leitune, V.C.; Samuel, S.M.W. Discrepancies in degree of conversion measurements by FTIR. Braz. Oral Res. 2013, 27, 453–454. [Google Scholar] [PubMed]
- ISO 1099312; Biological Evaluation of Medical Devices. Part 12: Sample Preparation and Reference Materials. International Organization for Standardization: Geneva, Switzerland, 2002.
- Bandarra, S.; Neves, J.; Paraíso, A.; Mascarenhas, P.; Ribeiro, A.C.; Barahona, I. Biocompatibility of self-adhesive resin cement with fibroblast cells. J. Prosthet. Dent. 2021, 125, 705.e1–705.e7. [Google Scholar] [CrossRef]
- Fujioka-Kobayashi, M.; Miron, R.J.; Lussi, A.; Gruber, R.; Ilie, N.; Price, R.B.; Schmalz, G. Effect of the degree of conversion of resin-based composites on cytotoxicity, cell attachment, and gene expression. Dent. Mater. 2019, 35, 1173–1193. [Google Scholar] [CrossRef] [PubMed]
- Daronch, M.; Rueggeberg, F.A.; De Goes, M.F. Monomer conversion of pre-heated composite. J. Dent. Res. 2005, 84, 663–667. [Google Scholar] [CrossRef] [PubMed]
- Theobaldo, J.D.; Aguiar, F.H.B.; Pini, N.I.P.; Lima, D.A.N.L.; Liporoni, P.C.S.; Catelan, A. Effect of preheating and light-curing unit on physicochemical properties of a bulk fill composite. Clin. Cosmet. Investig. Dent. 2017, 9, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Tauböck, T.T.; Tarle, Z.; Marovic, D.; Attin, T. Pre-heating of high-viscosity bulk-fill resin composites: Effects on shrinkage force and monomer conversion. J. Dent. 2015, 43, 1358–1364. [Google Scholar] [CrossRef] [PubMed]
- Bail, M.; Malacarne-Zanon, J.; Silva, S.M.; Anauate-Netto, A.; Nascimento, F.D.; Amore, R.; Lewgoy, H.; Pashley, D.H.; Carrilho, M.R. Effect of air-drying on the solvent evaporation, degree of conversion and water sorption/solubility of dental adhesive models. J. Mater. Sci. Mater. Med. 2012, 23, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Zach, L.; Cohen, G. Pulp response to externally applied heat. Oral Surg. Oral Med. Oral Pathol. 1965, 19, 515–530. [Google Scholar] [CrossRef] [PubMed]
- Baldissara, P.; Catapano, S.; Scotti, R. Clinical and histological evaluation of thermal injury thresholds in human teeth: A preliminary study. J. Oral Rehabil. 1997, 24, 791–801. [Google Scholar] [CrossRef] [PubMed]
- Bhopatkar, J.; Ikhar, A.; Chandak, M.; Mankar, N.; Sedani, S. Composite pre-heating: A novel approach in restorative dentistry. Cureus 2022, 14, e27151. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Liu, Y.; Pan, Y.; Chen, M.; Meng, X. Cytotoxicity of Self-Adhesive Resin Cements on Human Periodontal Ligament Fibroblasts. Biomed. Res. Int. 2018, 2018, 7823467. [Google Scholar] [CrossRef] [PubMed]
- Lopes, L.C.P.; Terada, R.S.S.; Tsuzuki, F.M.; Giannini, M.; Hirata, R. Heating and preheating of dental restorative materials—A systematic review. Clin. Oral Investig. 2020, 24, 4225–4235. [Google Scholar] [CrossRef] [PubMed]
Cement | Composition | Lot | Manufacturer |
---|---|---|---|
RelyX U200 | Base paste: silane-treated glass powder, 2-propenoic acid, 2-methyl,1,10-[1-(hydroxymethyl)-1,2-ethanediyl] ester, triethylene glycol dimethacrylate (TEGDMA), silane-treated silica, fiber glass, sodium persulfate, and tert-butyl peroxy-3,5,5-trimethylhexanoate. Catalyst paste: silane-treated glass powder, dimethacrylate substitute, silane-treated silica, sodium p-toluenesulfonate, 1-Benzyl-5-phenylbarbituric acid, calcium salts, 1,12-Dodecanediol dimethacrylate, calcium hydroxide, and carbon dioxide titanium. | 8077839 | 3M/ESPE, St. Paul, MN, USA |
Set PP | Fluoro-aluminosilicate glass, urethane dimethacrylate, camphorquinone, acid monomer. | S21101231 | SDI, Bayswater, Victoria, Australia |
Maxcem Elite | Hydroxyethyl methacrylate (HEMA), methoxyphenol (MEHQ), comene hydroperoxide (CHPO), unpolymerized acrylic monomers, titanium dioxide (TiO2) and pigments. | 8399866 | Kerr Corporation, Orange, CA, USA |
Material | Room Temperature (23 °C) | Preheating (39 °C) |
---|---|---|
RelyX U200 | 34.13 ± 1.65 | 31.27 ± 1.45 |
Set PP | 35.59 ± 4.55 | 39.02 ± 1.47 |
MaxCem Elite | 32.42 ± 6.22 | 34.55 ± 2.31 |
Material | Dilution 1:10 24 h | Dilution 1:10 7 Days | ||
---|---|---|---|---|
Control | Preheated | Control | Preheated | |
RelyX U200 | 58.2 ± 32.6 Aa | 78.8 ± 11.8 Aa | 88.6 ± 14.3 Aa | 94.4 ± 14.2 Aa |
Set PP | 77.5 ± 6.1 Aa | 74.2 ± 13.5 Aa | 74.5 ± 8.0 Ab | 95.1 ± 8.4 Aa |
MaxCem Elite | 67.0 ± 0.6 Aa | 69.3 ± 13.9 Aa | 76.8 ± 6.5 Aa | 71.6 ± 3.5 Ba |
Material | Scar Area (24 h) | Scar Area (7 Days) | ||||
---|---|---|---|---|---|---|
T0 | T1 | % Migration | T0 | T1 | % Migration | |
U200 control | 396935 | 0 | 0 | 419929 | 383524 | 8.67 |
U200 preheated | 393159 | 0 | 0 | 395202 | 309167 | 21.77 |
SetPP control | 476130 | 0 | 0 | 412537 | 417019 | −1.09 |
SetPP preheated | 378987 | 0 | 0 | 393932 | 364406 | 7.33 |
MaxCel Elite control | 454822 | 0 | 0 | 358327 | 370650 | −3.44 |
MaxCem Elite preheated | 555235 | 0 | 0 | 221451 | 237891 | −7.42 |
Negative control | 340301 | 225141 | 33.84 | 401688 | 273951 | 66.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cantarelli, H.; Xavier, F.A.C.; Portella, F.F.; Hosaka, K.; Reston, E.G.; Hardan, L.; Bourgi, R.; Klein-Junior, C.A. Influence of Preheating Self-Adhesive Cements on the Degree of Conversion, Cell Migration, and Cell Viability. Appl. Mech. 2024, 5, 553-562. https://doi.org/10.3390/applmech5030031
Cantarelli H, Xavier FAC, Portella FF, Hosaka K, Reston EG, Hardan L, Bourgi R, Klein-Junior CA. Influence of Preheating Self-Adhesive Cements on the Degree of Conversion, Cell Migration, and Cell Viability. Applied Mechanics. 2024; 5(3):553-562. https://doi.org/10.3390/applmech5030031
Chicago/Turabian StyleCantarelli, Henrique, Fernando Antonio Costa Xavier, Fernando Freitas Portella, Keiichi Hosaka, Eduardo Galia Reston, Louis Hardan, Rim Bourgi, and Celso Afonso Klein-Junior. 2024. "Influence of Preheating Self-Adhesive Cements on the Degree of Conversion, Cell Migration, and Cell Viability" Applied Mechanics 5, no. 3: 553-562. https://doi.org/10.3390/applmech5030031
APA StyleCantarelli, H., Xavier, F. A. C., Portella, F. F., Hosaka, K., Reston, E. G., Hardan, L., Bourgi, R., & Klein-Junior, C. A. (2024). Influence of Preheating Self-Adhesive Cements on the Degree of Conversion, Cell Migration, and Cell Viability. Applied Mechanics, 5(3), 553-562. https://doi.org/10.3390/applmech5030031