Modeling and Simulation of the Aging Behavior of a Zinc Die Casting Alloy
Abstract
:1. Introduction
2. Experimental Work
2.1. Influence of Aging on the Thermo-Mechanical Behavior
2.2. Shrinkage
3. Constitutive Model of Large Deformations for Zamak 5
3.1. Resulting Stresses and Evolution Equations
3.2. Functions for the Material Parameters
3.3. Modeling of the Thermo-Physical Properties
3.3.1. Specific Heat Capacity
3.3.2. Thermal Diffusivity
3.3.3. Thermal Conductivity
4. Parameter Identification
4.1. Identification of the Aging Variable
4.2. Identification of the Mechanical Response
4.2.1. Elastic Part of the Equilibrium Stress State
4.2.2. Hysteretic Part of the Equilibrium Stress State
4.2.3. Overstress Part
1st Step: Shear Modulus
2nd Step: Viscosity
4.3. Identification of the Thermo-Physical Properties
4.3.1. Thermal Expansion
4.3.2. Specific Heat Capacity
4.3.3. Thermal Diffusivity
4.3.4. Thermal Conductivity
5. Stress Computation and Numerical Example
5.1. Stress Algorithm
5.2. Computational Examples
5.2.1. Influence of Temperature
5.2.2. Influence of Aging
5.2.3. Validation of the Model
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Transformations of Strains, Stresses and Their Time Derivatives
Appendix B. Stress Power and Resulting Stress Measures
Appendix C. Thermodynamical Consistence
Appendix C.1. Maxwell-Element
Appendix C.2. Plastic Element
Appendix D. Choice of Free Energies
Appendix D.1. Spring Element
Appendix D.2. Plastic Element and Maxwell-Element
Appendix D.3. Aging
Appendix E. Heat Conduction Equation and Thermal Properties
References
- Zinc Die Casting Alloys—Mechanical Properties. The International Zinc Association. 2018. Available online: https://www.zinc.org (accessed on 1 April 2018).
- Leis, W.; Kallien, L.H. Ageing of Zink Alloys. Int. Foundry Res. 2011, 64, 2–23. [Google Scholar]
- Martinez Page, M.A.; Hartmann, S. Experimental characterization, material modeling, identification and finite element simulation of the thermo-mechanical behavior of a zinc die-casting alloy. Int. J. Plast. 2018, 101, 74–105. [Google Scholar] [CrossRef]
- Martinez Page, M.; Hartmann, S. Modeling of aging effects in a zinc die casting alloy. Tech. Mech. 2018, 38, 55–72. [Google Scholar]
- Gebhard, E. Die Zinkecke des Dreistoffsystems Zink-Aluminium-Kupfer. Z. Met. 1940, 32, 78–85. [Google Scholar] [CrossRef]
- Gebhard, E. Über den β-Zerfall in aluminiumhaltigen Zinklegierungen und den Einfluss kleiner Beimengungen auf die Zerfallsgeschwindigkeit. Z. Met. 1941, 33, 328–332. [Google Scholar]
- Gebhard, E. Über den Aufbau und die Volumenänderung der Zink-Kupfer-Aluminium-Legierungen. Z. Met. 1942, 34, 208–215. [Google Scholar]
- Johnen, H. Zink-Taschenbuch, 3rd ed.; Metall-Verlag: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Murray, J. The Al-Zn (Aluminium-Zinc) system. B Alloy Phase Diagrams 1983, 4, 55–73. [Google Scholar] [CrossRef]
- Hänsel, G. Zinklegierungen; Zusammensetzung und Eigenschaften. Metall 1988, 42, 871–874. [Google Scholar]
- Zhu, Y.; Man, H.; Lee, W. Exothermic reaction in eutectoid Zn–Al based alloys. Mater. Sci. Eng. A 1999, 268, 147–153. [Google Scholar] [CrossRef]
- Zhu, Y. Phase transformations of eutectoid Zn-Al alloys. J. Mater. Sci. 2001, 36, 3973–3980. [Google Scholar] [CrossRef]
- Zhu, Y. General rule of phase decomposition in Zn-Al based alloys (II)—On effects of external stresses on phase transformations—. Mater. Trans. 2004, 45, 3083–3097. [Google Scholar] [CrossRef]
- Zhu, Y.; Hinojosa, J.; Yue, T.; Lee, W. Structural evolution in a continuously cast eutectoid Zn–Al-based alloy. Mater. Charact. 2002, 48, 315–322. [Google Scholar] [CrossRef]
- Zhu, Y.; Lee, W.; To, S. Ageing characteristics of Zn-Al based alloy (ZnAl7Cu3). J. Mater. Sci. 2003, 38, 1945–1952. [Google Scholar] [CrossRef]
- Zhu, Y.; Man, H.; Dorantes-Rosales, H.; Lee, W. Ageing characteristics of furnace cooled eutectoid Zn-Al based alloys. J. Mater. Sci. 2003, 38, 2925–2934. [Google Scholar] [CrossRef]
- Jareño, E.D.; Castro, M.J.; Maldonado, S.I.; Hernández, F.A. The effects of Cu and cooling rate on the fraction and distribution of epsilon phase in Zn-4Al-(3-5.6)Cu alloys. J. Alloys Compd. 2010, 490, 524–530. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.y.; Jiang, H.f.; Lu, X.c. Effects of heat treatment on microstructure and mechanical properties of ZA27 alloy. Trans. Nonferrous Met. Soc. China 2013, 23, 642–649. [Google Scholar] [CrossRef]
- Savaskan, T.; Pasa Hekimoglu, A. Microstructure and mechanical properties of Zn-15Al-based ternary and quaternary alloys. Mater. Sci. Eng. A 2014, 603, 52–57. [Google Scholar] [CrossRef]
- Pola, A.; Gelfi, M.; La Vecchia, G.M.; Montesano, L. On the aging of a hyper-eutectic Zn-Al alloy. La Metall. Ital. 2015, 4, 37–41. [Google Scholar]
- Wu, Z.; Sandlöbes, S.; Wu, L.; Hu, W.; Korte-Kerzel, S. Mechanical behaviour of Zn–Al–Cu–Mg alloys: Deformation mechanisms of as-cast microstructures. Mater. Sci. Eng. 2016, 651, 675–687. [Google Scholar] [CrossRef]
- Führ, L.; Ludwig, G.A.; Martins, M.; Vecchia, F.; Rieder, E.; Malfatti, C.; Oliveira, C. Effects of Mould Temperature in Squeeze Casting of Zamak 5. Mater. Sci. For. 2014, 775, 729–732. [Google Scholar] [CrossRef]
- Cao, L.; Liao, D.; Sun, F.; Chen, T.; Teng, Z.; Tang, Y. Prediction of gas entrapment defects during zinc alloy high-pressure die casting based on gas-liquid multiphase flow model. Int. J. Adv. Manuf. Technol. 2018, 94, 807–815. [Google Scholar] [CrossRef]
- Zhu, Y.H.; Orozco, E. Effects of tensile stress on microstructural change of eutectoid Zn-Al alloy. Metall. Mater. Trans. A 1995, 26, 2611–2615. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, Q.; Jiang, Y.; Li, Q. An experimental study of cyclic deformation of extruded AZ61A magnesium alloy. Int. J. Plast. 2011, 27, 768–787. [Google Scholar] [CrossRef]
- McDowell, D.L. A nonlinear kinematic hardening theory for cyclic thermoplasticity and thermoviscoplasticity. Int. J. Plast. 1992, 8, 695–728. [Google Scholar] [CrossRef]
- Rusinek, A.; Rodriguez-Martinez, J.A.; Arias, A. A thermo-viscoplastic constitutive model for FCC metals with application to OFHC copper. Int. J. Mech. Sci. 2010, 52, 120–135. [Google Scholar] [CrossRef]
- Li, X.; Guo, G.; Xiao, J.; Song, N.; Li, D. Constitutive modeling and the effects of strain-rate and temperature on the formability of Ti-6Al-4V alloy sheet. Mater. Des. 2014, 55, 325–334. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chen, X.M.; Wen, D.X.; Chen, M.S. A novel unified dislocation density-based model for hot deformation behavior of a nickel-based superalloy under dynamic recrystallization conditions. Appl. Phys. A 2016, 122, 805. [Google Scholar] [CrossRef]
- Martinez Page, M.A.; Ruf, M.; Hartmann, S. Numerical modeling of the thickness dependence of zinc die-cast materials. Comput. Mech. 2018, 62, 655–667. [Google Scholar] [CrossRef]
- Krempl, E. Viscoplasticity based on total strain. The modelling of creep with special considerations on initial strain and aging. J. Eng. Mater. Technol. 1979, 101, 380–386. [Google Scholar] [CrossRef]
- Chaboche, J. A review of some plasticity and viscoplasticity constitutive theories. Int. J. Plast. 2008, 24, 1642–1693. [Google Scholar] [CrossRef]
- Martinez Page, M.A.; Weidenfeller, B.; Hartmann, S. Influence of temperature and aging on the thermal diffusivity, thermal conductivity and heat capacity of a zinc die casting alloy. J. Alloys Compd. 2019, 786, 1060–1067. [Google Scholar] [CrossRef]
- Johlitz, M.; Lion, A. Chemo-thermomechanical ageing of elastomers based on multiphase continuum mechanics. Contin. Mech. Thermodyn. 2013, 25, 605–624. [Google Scholar] [CrossRef]
- Marquis, D.; Lemaitre, J. Constitutive equations for the coupling between elasto-plasticity damage and aging. Rev. Phys. Appliquée 1988, 23, 615–624. [Google Scholar] [CrossRef]
- Lemaitre, J.; Chaboche, J.L. Mechanics of Solid Materials; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Lion, A.; Johlitz, M. On the representation of chemical ageing of rubber in continuum mechanics. Int. J. Solids Struct. 2012, 49, 1227–1240. [Google Scholar] [CrossRef]
- Johlitz, M. On the Representation of Ageing Phenomena. J. Adhes. 2012, 88, 620–648. [Google Scholar] [CrossRef]
- Johlitz, M.; Diercks, N.; Lion, A. Thermo-oxidative ageing of elastomers: A modelling approach based on a finite strain theory. Int. J. Plast. 2014, 63, 138–151. [Google Scholar] [CrossRef]
- Dippel, B.; Johlitz, M.; Lion, A. Ageing of polymer bonds: A coupled chemomechanical modelling approach. Contin. Mech. Thermodyn. 2014, 26, 247–257. [Google Scholar] [CrossRef]
- Marquis, D.; Costa Mattos, H. Modeling of plasticity and aging as coupled phenomena. Int. J. Plast. 1991, 7, 865–877. [Google Scholar] [CrossRef]
- Diebels, S.; Geringer, A. Modelling Inhomogeneous Mechanical Properties in Adhesive Bonds. J. Adhes. 2012, 88, 924–940. [Google Scholar] [CrossRef]
- Meschke, G. Consideration of aging of shotcrete in the context of a 3D viscoplastic material model. Int. J. Numer. Methods Eng. 1996, 39, 3123–3143. [Google Scholar] [CrossRef]
- Bazant, Z.P.; Huet, C. Thermodynamic functions for ageing viscoelasicity: Integral form wihout internal variables. Int. J. Solids Struct. 1999, 36, 3993–4016. [Google Scholar] [CrossRef]
- Carol, I.; Bazant, Z. Viscoplasticity with aging caused by solidification of nonaging constituent. J. Eng. Mech. 1993, 119, 2252–2269. [Google Scholar] [CrossRef]
- Lubliner, J. Plasticity Theory; Macmillan Publishing Company: New York, NY, USA, 1990. [Google Scholar]
- Lubarda, V.A. Elastoplasticity Theory; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Haupt, P. Continuum Mechanics and Theory of Materials, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Lion, A. Constitutive modelling in finite thermoviscoplasticity: A physical approach based on nonlinear rheological models. Int. J. Plast. 2000, 16, 469–494. [Google Scholar] [CrossRef]
- Hartmann, S. Comparison of the Multiplicative Decompositions F = FΘFm and F = FmFΘ in Finite Strain Thermo-Elasticity; Technical Report Series Fac3-12-01; Faculty of Mathematics/Computer Sciences and Mechanical Engineering, Clausthal University of Technology (Germany): Clausthal-Zellerfeld, Germany, 2012. [Google Scholar]
- Miehe, C. Zur Numerischen Behandlung Thermomechanischer Prozesse; Report No. F88/6; Institut für Baumechanik und Numerische Mechanik, University of Hannover: Hannover, Germany, 1988. [Google Scholar]
- Lion, A. Thermomechanik von Elastomeren. Experimente und Materialtheorie; Report No. 1/2000; Habilitation, Institute of Mechanics, University of Kassel: Kassel, Germany, 2000. [Google Scholar]
- Reese, S. Thermomechanische Modellierung gummiartiger Polymer-Strukturen; Report No. F01/4; Habilitation, Institut für Baumechanik und Numerische Mechanik, Universität Hannover: Hannover, Germany, 2001. [Google Scholar]
- Hamkar, A.W. Eine Iterationsfreie Finite-Elemente Methode im Rahmen der Finiten Thermoviskoelastizität. Report No. 1/2013. Ph.D. Thesis, Institute of Applied Mechanics, Clausthal University of Technology, Clausthal-Zellerfeld, Germany, 2013. [Google Scholar]
- Quint, K.J. Thermomechanically Coupled Processes for Functionally Graded Materials: Experiments, Modelling, and Finite Element Analysis Using High-Order DIRK-Methods. Report No. 2/2012. Ph.D. Thesis, Institute of Applied Mechanics, Clausthal University of Technology, Clausthal-Zellerfeld, Germany, 2012. [Google Scholar]
- Martinez Page, M.A. Thermo-Mechanical Behavior of a Zinc Die Casting Alloy Considering Natural Aging. Report No. 1/2019. Ph.D. Thesis, Institute of Applied Mechanics, Clausthal University of Technology, Clausthal-Zellerfeld, Germany, 2019. [Google Scholar]
- Kallien, L.H.; Busse, M. Ursachen und Möglichkeiten zur Minimierung der Alterungsvorgänge bei Zinkdruckgusslegierungen; Technical Report; Hochschule Aalen and IFAM Bremen: Aalen, Germany, 2009. [Google Scholar]
- Krempl, E.; McMahon, J.; Yao, D. Viscoplasticity based on overstress with a differential growth law for the equilibrium stress. Mech. Mater. 1986, 5, 35–48. [Google Scholar] [CrossRef]
- Krempl, E. Models of viscoplasticity - some comments on equilibrium (back) stress and drag stress. Acta Mech. 1987, 69, 25–42. [Google Scholar] [CrossRef]
- Stitcti, M.; Krempl, E. A stability analysis of the uniaxial viscoplasticity theory based on overstress. Comput. Mech. 1989, 4, 401–408. [Google Scholar]
- Haupt, P.; Lion, A. Experimental identification and mathematical modelling of viscoplastic material behavior. J. Contin. Mech. Thermodyn. 1995, 7, 73–96. [Google Scholar] [CrossRef]
- Flory, P.J. Thermodynamic relations for high elastic materials. Trans. Faraday Soc. 1961, 57, 829–838. [Google Scholar] [CrossRef]
- Tsakmakis, C.; Willuweit, A. A comparative study of kinematic hardening rules at finite deformations. Int. J. Non-Linear Mech. 2004, 39, 539–554. [Google Scholar] [CrossRef]
- Hartmann, S.; Neff, P. Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. Int. J. Solids Struct. 2003, 40, 2767–2791. [Google Scholar] [CrossRef]
- Heimes, T. Finite Thermoinelastizität; Number 709 in Fortschrittsberichte, Reihe 5, Grund- und Werkstoffe/Kunststoffe; VDI-Verlag: Düsseldorf, Germany, 2005. [Google Scholar]
- Deschamps, A.; Livet, F.; Bréchet, Y. Influence of predeformation on ageing in an Al–Zn–Mg alloy—I. Microstructure evolution and mechanical properties. Acta Mater. 1998, 47, 281–292. [Google Scholar] [CrossRef]
- Cerri, E.; Leo, P. Influence of severe plastic deformation on aging of Al–Mg–Si alloys. Mater. Sci. Eng. A 2005, 410–411, 226–229. [Google Scholar] [CrossRef]
- Lion, A.; Dippel, B.; Liebl, C. Thermomechanical material modelling based on a hybrid free energy density depending on pressure, isochoric deformation and temperature. Int. J. Solids Struct. 2014, 51, 729–739. [Google Scholar] [CrossRef]
- Krämer, S.; Rothe, S.; Hartmann, S. Homogeneous stress-strain states computed by 3D-stress algorithms of FE-codes: Application to material parameter identification. Eng. Comput. 2015, 31, 141–159. [Google Scholar] [CrossRef]
- Beck, J.V.; Arnold, K.J. Parameter Estimation in Engineering and Science; John Wiley & Sons: New York, NY, USA, 1977. [Google Scholar]
- Schiesser, W.E. The Numerical Method of Lines: Integration of Partial Differential Equations; Academic Press: Cambridge, MA, USA, 1991. [Google Scholar]
- Hartmann, S.; Rothe, S. A Rigorous Application of the Method of Vertical Lines to Coupled Systems in Finite Element Analysis. In Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws; Notes on Numerical Fluid Mechanics and Multidisciplinary Design; Ansorge, R., Bijl, H., Meister, A., Sonar, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 120, pp. 161–175. [Google Scholar]
- Netz, T.; Hamkar, A.W.; Hartmann, S. High-order quasi-static finite element computations in space and time with application to finite strain viscoelasticity. Comput. Math. Appl. 2013, 66, 441–459. [Google Scholar] [CrossRef]
- Rothe, S.; Erbts, P.; Düster, A.; Hartmann, S. Monolithic and partitioned coupling schemes for thermo-viscoplasticity. Comput. Methods Appl. Mech. Eng. 2015, 293, 375–410. [Google Scholar] [CrossRef]
- Quint, K.J.; Hartmann, S.; Rothe, S.; Saba, N.; Steinhoff, K. Experimental validation of high-order time-integration for non-linear heat transfer problems. Comput. Mech. 2011, 48, 81–96. [Google Scholar] [CrossRef]
- Hartmann, S. A remark on the application of the Newton-Raphson method in non-linear finite element analysis. Comput. Mech. 2005, 36, 100–116. [Google Scholar] [CrossRef]
- Rabbat, N.B.G.; Sangiovanni-Vincentelli, A.L.; Hsieh, H.Y. A Multilevel Newton Algorithm with Macromodeling and Latency for the Analysis of Large-Scale Nonlinear Circuits in the Time Domain. IEEE Trans. Circuits Syst. 1979, 26, 733–740. [Google Scholar] [CrossRef]
- Korelc, J. Multi-language and Multi-environment Generation of Nonlinear Finite Element Codes. Eng. Comput. 2002, 18, 312–327. [Google Scholar] [CrossRef]
- Korelc, J. Automation of primal and sensitivity analysis of transient coupled problems. Comput. Mech. 2009, 44, 631–649. [Google Scholar] [CrossRef]
- Rabinowicz, E. The nature of the static and kinetic coefficients of friction. J. Appl. Phisics 1951, 22, 1373–1379. [Google Scholar] [CrossRef]
- Dileep, P.K.; Hartmann, S.; Hua, W.; Palkowski, H.; Fischer, T.; Ziegmann, G. Parameter estimation and its influence on layered metal-composite-metal plates. Acta Mech. 2022, 233, 2891–2929. [Google Scholar] [CrossRef]
- Dileep, P.K.; Hartmann, S.; Javadi, M.; Palkowski, H.; Fischer, T.; Ziegmann, G. Uncertainty estimation using Gaussian error propagation in metal forming process simulation. PAMM Proc. Appl. Math. Mech. 2022, 22, e202200073. [Google Scholar] [CrossRef]
- Oberkampf, W.L.; Trucano, T.G. Verification and validation in computational fluid dynamics. Prog. Aerosp. Sci. 2002, 38, 209–272. [Google Scholar] [CrossRef]
- Hartmann, S. Finite-Elemente Berechnung Inelastischer Kontinua. Interpretation als Algebro-Differentialgleichungssysteme; Report No. 1/2003; Habilitation, University of Kassel, Institute of Mechanics: Kassel, Germany, 2003. [Google Scholar]
- Jansohn, W. Formulierung und Integration von Stoffgesetzen zur Berechnung großer Deformationen in der Thermoplastizität und -Viskoplastizität; Technical Report FZKA 6002; Forschungszentrum Karlsruhe: Karlsruhe, Germany, 1997. [Google Scholar]
- Rothe, S. Electro-Thermo-Mechanical Modeling of Field Assisted Sintering Technology: Experiments, Constitutive Modeling and Finite Element Analysis. Report No. 1/2015. Ph.D. Thesis, Institute of Applied Mechanics, Clausthal University of Technology, Clausthal-Zellerfeld, Germany, 2015. [Google Scholar]
Kinematic | |
, | (2), (9), (10) |
, | (3) |
2nd Piola-Kirchhoff stresses in the reference configuration | |
(1) | |
(A57), (A58) | |
(A64) | |
(A65) | |
Kirchhoff stresses in the current configuration | |
, | (A59), (A60) |
(A66) | |
(A67) | |
Evolution equations in the reference configuration | |
(49) | |
(50) | |
(58) | |
(54) | |
(53) | |
Temperature, softening and aging-dependent functions | |
(58) | |
(59) | |
(60) | |
(61) | |
(62) | |
, | (63), (64) |
, | (4), (5) |
Parameter | |||
---|---|---|---|
− | − | ||
initial value | 10−3 | 10−3 | 1 |
final value | 1.37 × 10−3 | 8113 | |
conf. interval | 10−7 | 2748 |
Parameter | |||||
---|---|---|---|---|---|
− | MPa | MPa | − | K | |
initial values | |||||
final values | |||||
conf. intervals |
Parameter | |||
---|---|---|---|
MPa | − | − | |
initial value | 1.604 × 104 | 2 × 10−1 | 3.5 × 10−1 |
final value | 1.424 × 104 | 2.531 × 10−1 | 3.349 × 10−1 |
conf. interval | 5.71 × 10−4 | 6.8 × 10−4 |
Parameter | ||||||
---|---|---|---|---|---|---|
K | − | K | K−1 | − | K−1 | |
initial value | 1.26 × 10−9 | |||||
final value | 3.47 × 10−10 | |||||
conf. interval | 2.8 × 10−4 | 9.7 × 10−6 | 4.80 × 10−11 | 4.1 × 10−4 |
Parameter | |||
---|---|---|---|
MPa s | MPa s | − | |
initial value | |||
final value | 1612 | ||
conf. interval |
Equilibrium Stress | |||||||||
parameter | K | ||||||||
value | 4.95 × 104 | 50 | 5.925 × 103 | ||||||
dimension | − | ||||||||
Shear Modulus Overstress | |||||||||
parameter | |||||||||
value | 350 | 1.424 × 104 | |||||||
dimension | − | − | − | ||||||
Viscosity | |||||||||
parameter | |||||||||
value | 1612 | 3.47 × 10−10 | |||||||
dimension | − | − | − |
Parameter | ||||
---|---|---|---|---|
mm2 s−1 | mm2 s−1 K−1 | mm2 s−1 | mm2 s−1 K−1 | |
initial value | 1 | 1 | 42 | 5 × 10−3 |
final value | 2.92 × 10−2 | 4.63 × 10−3 | ||
conf. interval | 0.12 × 10−2 | 1.2 × 10−3 |
Simulation 1 | Simulation 2 | Simulation 3 | Simulation 4 | |
---|---|---|---|---|
100 | 1 | 1 | ||
210 | 1 | 1 |
Exp. 1 | Exp. 2 | Exp. 3 | Exp. 4 | Exp. 5 | Exp. 6 | Exp. 7 | |
---|---|---|---|---|---|---|---|
E in − | |||||||
CI in − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez Page, M.A.; Hartmann, S. Modeling and Simulation of the Aging Behavior of a Zinc Die Casting Alloy. Appl. Mech. 2024, 5, 646-695. https://doi.org/10.3390/applmech5040037
Martinez Page MA, Hartmann S. Modeling and Simulation of the Aging Behavior of a Zinc Die Casting Alloy. Applied Mechanics. 2024; 5(4):646-695. https://doi.org/10.3390/applmech5040037
Chicago/Turabian StyleMartinez Page, Maria Angeles, and Stefan Hartmann. 2024. "Modeling and Simulation of the Aging Behavior of a Zinc Die Casting Alloy" Applied Mechanics 5, no. 4: 646-695. https://doi.org/10.3390/applmech5040037
APA StyleMartinez Page, M. A., & Hartmann, S. (2024). Modeling and Simulation of the Aging Behavior of a Zinc Die Casting Alloy. Applied Mechanics, 5(4), 646-695. https://doi.org/10.3390/applmech5040037