The Rationale for the Optimal Continuous-Variable Quantum Key Distribution Protocol
Abstract
:1. Introduction
2. Classification of CV-QKD Protocols and Justification of Optimal Parameters
2.1. General Approach to CV-QKD Protocol Description
2.2. Quantum Channel Implementation
2.3. Channel Configuration Schemes
2.4. Types of Modulation
2.5. Quantum States
2.6. Coherent Detection Schemes
2.6.1. Homodyne Detection
2.6.2. Heterodyne Detection
2.6.3. Heterodyne Detection with Transfer to Difference Frequency
2.6.4. Coherent Detection and Protocol Security
2.7. Types of LO
- Eve introduces an attenuator featuring an attenuation coefficient into the channel for a fraction of LO pulses to change the shape of the pulses themselves. The trigger is delayed by .
- Eve introduces a beam splitter featuring a transmission coefficient and realizes an attack as a partial “intercept-resend” [74]. Thus, the excess noise of the system is given by:
2.8. Reconciliation Protocols
3. Conclusions
- General scheme of the protocol—PM scenario;
- Quantum channel implementation—fiber-optical network;
- Channel configuration—one-way scheme;
- Type of modulation—Gaussian modulation;
- Signal states—single-mode coherent states;
- Coherent detection scheme—heterodyning;
- LO implementation—on Alice’s side;
- Reconciliation protocol—reverse reconciliation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Scarani, V.; Bechmann-Pasquinucci, H.; Cerf, N.J.; Dušek, M.; Lütkenhaus, N.; Peev, M. The security of practical quantum key distribution. Rev. Mod. Phys. 2009, 81, 1301–1350. [Google Scholar] [CrossRef]
- Pirandola, S.; Andersen, U.L.; Banchi, L.; Berta, M.; Bunandar, D.; Colbeck, R.; Englund, D.; Gehring, T.; Lupo, C.; Ottaviani, C.; et al. Advances in quantum cryptography. Adv. Opt. Photonics 2020, 12, 1012. [Google Scholar] [CrossRef]
- Shor, P.W. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the IEEE 35th Annual Symposium On Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; pp. 124–134. [Google Scholar]
- Bennett, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 2014, 560, 7–11. [Google Scholar] [CrossRef]
- Gleim, A.V.; Egorov, V.I.; Nazarov, Y.V.; Smirnov, S.V.; Chistyakov, V.V.; Bannik, O.I.; Anisimov, A.A.; Kynev, S.M.; Ivanova, A.E.; Collins, R.J.; et al. Secure polarization-independent subcarrier quantum key distribution in optical fiber channel using BB84 protocol with a strong reference. Opt. Express 2016, 24, 2619. [Google Scholar] [CrossRef] [PubMed]
- Stucki, D.; Gisin, N.; Guinnard, O.; Ribordy, G.; Zbinden, H. Quantum key distribution over 67 km with a plug&play system. New J. Phys. 2002, 4, 341. [Google Scholar] [CrossRef]
- Simon, C. Towards a global quantum network. Nat. Photonics 2017, 11, 678–680. [Google Scholar] [CrossRef]
- Lo, H.K.; Curty, M.; Qi, B. Measurement-Device-Independent Quantum Key Distribution. Phys. Rev. Lett. 2012, 108, 130503. [Google Scholar] [CrossRef]
- Lucamarini, M.; Yuan, Z.L.; Dynes, J.F.; Shields, A.J. Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 2018, 557, 400–403. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Z.; Pirandola, S.; Wang, X.; Zhou, C.; Chu, B.; Zhao, Y.; Xu, B.; Yu, S.; Guo, H. Long-Distance Continuous-Variable Quantum Key Distribution over 202.81 km of Fiber. Phys. Rev. Lett. 2020, 125, 010502. [Google Scholar] [CrossRef] [PubMed]
- Grosshans, F.; Grangier, P. Continuous Variable Quantum Cryptography Using Coherent States. Phys. Rev. Lett. 2002, 88, 057902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirano, T.; Yamanaka, H.; Ashikaga, M.; Konishi, T.; Namiki, R. Quantum cryptography using pulsed homodyne detection. Phys. Rev. A 2003, 68, 042331. [Google Scholar] [CrossRef]
- Jouguet, P.; Kunz-Jacques, S.; Leverrier, A. Long-distance continuous-variable quantum key distribution with a Gaussian modulation. Phys. Rev. A 2011, 84, 062317. [Google Scholar] [CrossRef]
- Jouguet, P.; Kunz-Jacques, S.; Leverrier, A.; Grangier, P.; Diamanti, E. Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics 2013, 7, 378–381. [Google Scholar] [CrossRef]
- Jouguet, P.; Elkouss, D.; Kunz-Jacques, S. High-bit-rate continuous-variable quantum key distribution. Phys. Rev. A 2014, 90, 042329. [Google Scholar] [CrossRef]
- Huang, D.; Huang, P.; Lin, D.; Zeng, G. Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep. 2016, 6, 19201. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.; Chin, H.M.; Mani, H.; Lupo, C.; Nikolic, D.S.; Kordts, A.; Pirandola, S.; Pedersen, T.B.; Kolb, M.; Ömer, B.; et al. Practical continuous-variable quantum key distribution with composable security. Nat. Commun. 2022, 13, 4740. [Google Scholar] [CrossRef]
- Protopopov, V.V.; Ustinov, N.D. Laser Heterodyning; “Nauka”, Glav. red. Fiziko-Matematicheskoi lit-ry: Moscow, Russia, 1985. [Google Scholar]
- Li, Z.; Zhang, Y.C.; Xu, F.; Peng, X.; Guo, H. Continuous-variable measurement-device-independent quantum key distribution. Phys. Rev. A 2014, 89, 052301. [Google Scholar] [CrossRef]
- Pirandola, S.; Ottaviani, C.; Spedalieri, G.; Weedbrook, C.; Braunstein, S.L.; Lloyd, S.; Gehring, T.; Jacobsen, C.S.; Andersen, U.L. High-rate measurement-device-independent quantum cryptography. Nat. Photonics 2015, 9, 397–402. [Google Scholar] [CrossRef]
- Papanastasiou, P.; Ottaviani, C.; Pirandola, S. Finite-size analysis of measurement-device-independent quantum cryptography with continuous variables. Phys. Rev. A 2017, 96, 042332. [Google Scholar] [CrossRef]
- Lupo, C.; Ottaviani, C.; Papanastasiou, P.; Pirandola, S. Continuous-variable measurement-device-independent quantum key distribution: Composable security against coherent attacks. Phys. Rev. A 2018, 97, 052327. [Google Scholar] [CrossRef] [Green Version]
- Goncharov, R.K.; Bolychev, E.; Vorontsova, I.O.; Samsonov, E.O.; Egorov, V.I. Overview of device-independent continuous-variable quantum key distribution. Nanosyst. Phys. Chem. Math. 2022, 13, 290–298. [Google Scholar] [CrossRef]
- Grosshans, F.; Cerf, N.J.; Wenger, J.; Tualle-Brouri, R.; Grangier, P. Virtual Entanglement and Reconciliation Protocols for Quantum Cryptography with Continuous Variables. Quantum Inf. Comput. 2003, 3, 535–552. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G.; Mermin, N.D. Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 1992, 68, 557–559. [Google Scholar] [CrossRef] [PubMed]
- Molotkov, S.N. Quantum Key Distribution with Nonbinary Phase–Time Encoding That Admits an Exact Proof of Secrecy. J. Exp. Theor. Phys. 2019, 128, 700–706. [Google Scholar] [CrossRef]
- Pirandola, S. Limits and security of free-space quantum communications. Phys. Rev. Res. 2021, 3, 013279. [Google Scholar] [CrossRef]
- Kozubov, A.; Gaidash, A.; Miroshnichenko, G. Finite-key security for quantum key distribution systems utilizing weak coherent states. arXiv 2019, arXiv:1903.04371. [Google Scholar]
- Gaidash, A.; Kozubov, A.; Miroshnichenko, G. Countermeasures for advanced unambiguous state discrimination attack on quantum key distribution protocol based on weak coherent states. Phys. Scr. 2019, 94, 125102. [Google Scholar] [CrossRef]
- Kozubov, A.; Gaidash, A.; Miroshnichenko, G. Quantum control attack: Towards joint estimation of protocol and hardware loopholes. Phys. Rev. A 2021, 104, 022603. [Google Scholar] [CrossRef]
- Leverrier, A. Security of Continuous-Variable Quantum Key Distribution via a Gaussian de Finetti Reduction. Phys. Rev. Lett. 2017, 118, 200501. [Google Scholar] [CrossRef]
- Furrer, F.; Franz, T.; Berta, M.; Leverrier, A.; Scholz, V.B.; Tomamichel, M.; Werner, R.F. Continuous Variable Quantum Key Distribution: Finite-Key Analysis of Composable Security against Coherent Attacks. Phys. Rev. Lett. 2012, 109, 100502. [Google Scholar] [CrossRef]
- Furrer, F.; Franz, T.; Berta, M.; Leverrier, A.; Scholz, V.B.; Tomamichel, M.; Werner, R.F. Erratum: Continuous Variable Quantum Key Distribution: Finite-Key Analysis of Composable Security Against Coherent Attacks. Phys. Rev. Lett. 2014, 112, 019902. [Google Scholar] [CrossRef]
- Cerf, N.J.; Lévy, M.; Assche, G.V. Quantum distribution of Gaussian keys using squeezed states. Phys. Rev. A 2001, 63, 052311. [Google Scholar] [CrossRef]
- Hosseinidehaj, N.; Walk, N.; Ralph, T.C. Optimal realistic attacks in continuous-variable quantum key distribution. Phys. Rev. A 2019, 99, 052336. [Google Scholar] [CrossRef]
- Hosseinidehaj, N.; Lance, A.M.; Symul, T.; Walk, N.; Ralph, T.C. Finite-size effects in continuous-variable quantum key distribution with Gaussian postselection. Phys. Rev. A 2020, 101, 052335. [Google Scholar] [CrossRef]
- Pirandola, S. Composable security for continuous variable quantum key distribution: Trust levels and practical key rates in wired and wireless networks. Phys. Rev. Res. 2021, 3, 043014. [Google Scholar] [CrossRef]
- Hiskett, P.A.; Rosenberg, D.; Peterson, C.G.; Hughes, R.J.; Nam, S.; Lita, A.E.; Miller, A.J.; Nordholt, J.E. Long-distance quantum key distribution in optical fibre. New J. Phys. 2006, 8, 193. [Google Scholar] [CrossRef]
- Shen, S.Y.; Dai, M.W.; Zheng, X.T.; Sun, Q.Y.; Guo, G.C.; Han, Z.F. Free-space continuous-variable quantum key distribution of unidimensional Gaussian modulation using polarized coherent states in an urban environment. Phys. Rev. A 2019, 100, 012325. [Google Scholar] [CrossRef]
- Er-long, M.; Zheng-fu, H.; Shun-sheng, G.; Tao, Z.; Da-sheng, D.; Guang-can, G. Background noise of satellite-to-ground quantum key distribution. New J. Phys. 2005, 7, 215. [Google Scholar] [CrossRef]
- Liorni, C.; Kampermann, H.; Bruß, D. Satellite-based links for quantum key distribution: Beam effects and weather dependence. New J. Phys. 2019, 21. [Google Scholar] [CrossRef]
- Semenov, A.A.; Töppel, F.; Vasylyev, D.Y.; Gomonay, H.V.; Vogel, W. Homodyne detection for atmosphere channels. Phys. Rev. A 2012, 85, 013826. [Google Scholar] [CrossRef]
- Marand, C.; Townsend, P.D. Quantum key distribution over distances as long as 30 km. Opt. Lett. 1995, 20, 1695. [Google Scholar] [CrossRef]
- Kawamoto, Y.; Hirano, T.; Namiki, R.; Ashikaga, M.; Shimoguchi, A.; Ohta, K. “Plug and play” systems for quantum cryptography with continuous variables. IQEC Int. Quantum Electron. Conf. Proc. 2005, 2005, 1612–1613. [Google Scholar] [CrossRef]
- Pirandola, S.; Mancini, S.; Lloyd, S.; Braunstein, S.L. Continuous-variable quantum cryptography using two-way quantum communication. Nat. Phys. 2008, 4, 726–730. [Google Scholar] [CrossRef]
- Ottaviani, C.; Pirandola, S. General immunity and superadditivity of two-way Gaussian quantum cryptography. Sci. Rep. 2016, 6, 22225. [Google Scholar] [CrossRef]
- Ghorai, S.; Diamanti, E.; Leverrier, A. Composable security of two-way continuous-variable quantum key distribution without active symmetrization. Phys. Rev. A 2019, 99, 012311. [Google Scholar] [CrossRef]
- Huang, D.; Huang, P.; Wang, T.; Li, H.; Zhou, Y.; Zeng, G. Continuous-variable quantum key distribution based on a plug-and-play dual-phase-modulated coherent-states protocol. Phys. Rev. A 2016, 94, 032305. [Google Scholar] [CrossRef]
- Valivarthi, R.; Etcheverry, S.; Aldama, J.; Zwiehoff, F.; Pruneri, V. Plug-and-play continuous-variable quantum key distribution for metropolitan networks. Opt. Express 2020, 28, 14547. [Google Scholar] [CrossRef]
- Diamanti, E.; Leverrier, A. Distributing secret keys with quantum continuous variables: Principle, security and implementations. Entropy 2015, 17, 6072–6092. [Google Scholar] [CrossRef]
- Goncharov, R.; Samsonov, E.; Kiselev, A.D. Subcarrier wave quantum key distribution system with gaussian modulation. J. Phys. Conf. Ser. 2021, 2103, 012169. [Google Scholar] [CrossRef]
- Hirano, T.; Ichikawa, T.; Matsubara, T.; Ono, M.; Oguri, Y.; Namiki, R.; Kasai, K.; Matsumoto, R.; Tsurumaru, T. Implementation of continuous-variable quantum key distribution with discrete modulation. Quantum Sci. Technol. 2017, 2, 24010. [Google Scholar] [CrossRef]
- Lin, J.; Upadhyaya, T.; Lütkenhaus, N. Asymptotic Security Analysis of Discrete-Modulated Continuous-Variable Quantum Key Distribution. Phys. Rev. X 2019, 9, 041064. [Google Scholar] [CrossRef] [Green Version]
- Denys, A.; Brown, P.; Leverrier, A. Explicit asymptotic secret key rate of continuous-variable quantum key distribution with an arbitrary modulation. Quantum 2021, 5, 540. [Google Scholar] [CrossRef]
- Lupo, C. Towards practical security of continuous-variable quantum key distribution. Phys. Rev. A 2020, 102, 022623. [Google Scholar] [CrossRef]
- Rios, C. Experimental Characterization of a Discrete Gaussian-Modulated Quantum Key Distribution System. Ph.D. Thesis, The University of Arizona, Tucson, AZ, USA, 2021. [Google Scholar]
- Lupo, C.; Ouyang, Y. Quantum Key Distribution with Nonideal Heterodyne Detection: Composable Security of Discrete-Modulation Continuous-Variable Protocols. PRX Quantum 2022, 3, 010341. [Google Scholar] [CrossRef]
- Roumestan, F.; Ghazisaeidi, A.; Renaudier, J.; Vidarte, L.T.; Leverrier, A.; Diamanti, E.; Grangier, P. Experimental Demonstration of Discrete Modulation Formats for Continuous Variable Quantum Key Distribution. arXiv 2022, arXiv:2207.11702. [Google Scholar]
- Pan, Y.; Wang, H.; Shao, Y.; Pi, Y.; Li, Y.; Liu, B.; Huang, W.; Xu, B. Experimental Demonstration of High-Rate Discrete-Modulated Continuous-Variable Quantum Key Distribution System. arXiv 2022, arXiv:2203.08470. [Google Scholar] [CrossRef]
- Ghorai, S.; Grangier, P.; Diamanti, E.; Leverrier, A. Asymptotic Security of Continuous-Variable Quantum Key Distribution with a Discrete Modulation. Phys. Rev. X 2019, 9, 021059. [Google Scholar] [CrossRef]
- Samsonov, E.; Goncharov, R.; Gaidash, A.; Kozubov, A.; Egorov, V.; Gleim, A. Subcarrier wave continuous variable quantum key distribution with discrete modulation: Mathematical model and finite-key analysis. Sci. Rep. 2020, 10, 10034. [Google Scholar] [CrossRef]
- Fang, J.; Huang, P.; Zeng, G. Multichannel parallel continuous-variable quantum key distribution with Gaussian modulation. Phys. Rev. A 2014, 89, 022315. [Google Scholar] [CrossRef]
- Shi, S.; Tian, L.; Wang, Y.; Zheng, Y.; Xie, C.; Peng, K. Demonstration of Channel Multiplexing Quantum Communication Exploiting Entangled Sideband Modes. Phys. Rev. Lett. 2020, 125, 070502. [Google Scholar] [CrossRef]
- Ralph, T.C. Continuous variable quantum cryptography. Phys. Rev. A 1999, 61, 010303. [Google Scholar] [CrossRef]
- García-Patrón, R.; Cerf, N.J. Continuous-variable quantum key distribution protocols over noisy channels. Phys. Rev. Lett. 2009, 102, 130501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weedbrook, C.; Lance, A.M.; Bowen, W.P.; Symul, T.; Ralph, T.C.; Lam, P.K. Quantum Cryptography Without Switching. Phys. Rev. Lett. 2004, 93, 170504. [Google Scholar] [CrossRef]
- Weedbrook, C.; Pirandola, S.; Ralph, T.C. Continuous-variable quantum key distribution using thermal states. Phys. Rev. A—At. Mol. Opt. Phys. 2012, 86. [Google Scholar] [CrossRef]
- Laudenbach, F.; Pacher, C.; Fung, C.H.F.; Poppe, A.; Peev, M.; Schrenk, B.; Hentschel, M.; Walther, P.; Hübel, H. Continuous-Variable Quantum Key Distribution with Gaussian Modulation-The Theory of Practical Implementations. Adv. Quantum Technol. 2018, 1, 1800011. [Google Scholar] [CrossRef]
- Kleis, S.; Rueckmann, M.; Schaeffer, C.G. Continuous-Variable Quantum Key Distribution with a Real Local Oscillator and without Auxiliary Signals. arXiv 2019, arXiv:1908.03625. [Google Scholar]
- Samsonov, E.; Goncharov, R.; Fadeev, M.; Zinoviev, A.; Kirichenko, D.; Nasedkin, B.; Kiselev, A.D.; Egorov, V. Coherent detection schemes for subcarrier wave continuous variable quantum key distribution. J. Opt. Soc. Am. B 2021, 38, 2215. [Google Scholar] [CrossRef]
- Leverrier, A.; García-Patrón, R.; Renner, R.; Cerf, N.J. Security of Continuous-Variable Quantum Key Distribution Against General Attacks. Phys. Rev. Lett. 2013, 110, 030502. [Google Scholar] [CrossRef]
- Leverrier, A. Composable Security Proof for Continuous-Variable Quantum Key Distribution with Coherent States. Phys. Rev. Lett. 2015, 114, 070501. [Google Scholar] [CrossRef]
- Jouguet, P.; Kunz-Jacques, S.; Diamanti, E. Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution. Phys. Rev. A—At. Mol. Opt. Phys. 2013, 87, 062313. [Google Scholar] [CrossRef]
- Lodewyck, J.; Bloch, M.; García-Patrón, R.; Fossier, S.; Karpov, E.; Diamanti, E.; Debuisschert, T.; Cerf, N.J.; Tualle-Brouri, R.; McLaughlin, S.W.; et al. Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys. Rev. A 2007, 76, 42305. [Google Scholar] [CrossRef]
- Marie, A.; Alléaume, R. Self-coherent phase reference sharing for continuous-variable quantum key distribution. Phys. Rev. A 2017, 95, 012316. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, H.; Pi, Y.; Huang, W.; Li, Y.; Liu, J.; Yang, J.; Zhang, Y.; Xu, B. Phase noise model for continuous-variable quantum key distribution using a local local oscillator. Phys. Rev. A 2021, 104, 032608. [Google Scholar] [CrossRef]
- Zou, M.; Mao, Y.; Chen, T.Y. Phase estimation using homodyne detection for continuous variable quantum key distribution. J. Appl. Phys. 2019, 126, 063105. [Google Scholar] [CrossRef]
- Mao, Y.; Huang, W.; Zhong, H.; Wang, Y.; Qin, H.; Guo, Y.; Huang, D. Detecting quantum attacks: A machine learning based defense strategy for practical continuous-variable quantum key distribution. New J. Phys. 2020, 22, 083073. [Google Scholar] [CrossRef]
- Luo, H.; Zhang, L.; Qin, H.; Sun, S.; Huang, P.; Wang, Y.; Wu, Z.; Guo, Y.; Huang, D. Beyond universal attack detection for continuous-variable quantum key distribution via deep learning. Phys. Rev. A 2022, 105, 042411. [Google Scholar] [CrossRef]
- Shao, Y.; Pan, Y.; Wang, H.; Pi, Y.; Li, Y.; Ma, L.; Zhang, Y.; Huang, W.; Xu, B. Polarization Attack on Continuous-Variable Quantum Key Distribution with a Local Local Oscillator. Entropy 2022, 24, 992. [Google Scholar] [CrossRef]
- Silberhorn, C.; Ralph, T.C.; Lütkenhaus, N.; Leuchs, G. Continuous Variable Quantum Cryptography: Beating the 3 dB Loss Limit. Phys. Rev. Lett. 2002, 89, 167901. [Google Scholar] [CrossRef]
- Grosshans, F.; Grangier, P. Reverse reconciliation protocols for quantum cryptography with continuous variables. arXiv 2002, arXiv:0204127. [Google Scholar]
- Van Assche, G.; Cardinal, J.; Cerf, N. Reconciliation of a Quantum-Distributed Gaussian Key. IEEE Trans. Inf. Theory 2004, 50, 394–400. [Google Scholar] [CrossRef]
- Leverrier, A.; Alléaume, R.; Boutros, J.; Zémor, G.; Grangier, P. Multidimensional reconciliation for a continuous-variable quantum key distribution. Phys. Rev. A 2008, 77, 042325. [Google Scholar] [CrossRef]
- Richardson, T.; Urbanke, R. Modern Coding Theory; Cambridge University Press: Cambridge, UK, 2012; p. 572. [Google Scholar] [CrossRef]
- Mani, H. Error Reconciliation Protocols for Continuous-Variable Quantum Key Distribution. Ph.D. Thesis, Technical University of Denmark, Copenhagen, Denmark, 2021. [Google Scholar]
Classification | Item |
---|---|
general scheme of a protocol | prepare-and-measure; entanglement-based |
quantum channel implementation | fiber-optical; free space |
channel configuration | one-way scheme; two-way scheme |
type of modulation | Gaussian; non-Gaussian |
signal states | single-mode squeezed; single-mode coherent; multimode coherent; two-mode squeezed; thermal |
coherent detection schemes | homodyne; heterodyne (double homodyne); heterodyne at intermediate frequency |
LO implementation | on Alice’s side; on Bob’s side |
reconciliation protocols | direct (or forward); reverse |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goncharov, R.; Vorontsova, I.; Kirichenko, D.; Filipov, I.; Adam, I.; Chistiakov, V.; Smirnov, S.; Nasedkin, B.; Pervushin, B.; Kargina, D.; et al. The Rationale for the Optimal Continuous-Variable Quantum Key Distribution Protocol. Optics 2022, 3, 338-351. https://doi.org/10.3390/opt3040030
Goncharov R, Vorontsova I, Kirichenko D, Filipov I, Adam I, Chistiakov V, Smirnov S, Nasedkin B, Pervushin B, Kargina D, et al. The Rationale for the Optimal Continuous-Variable Quantum Key Distribution Protocol. Optics. 2022; 3(4):338-351. https://doi.org/10.3390/opt3040030
Chicago/Turabian StyleGoncharov, Roman, Irina Vorontsova, Daniil Kirichenko, Ilya Filipov, Iurii Adam, Vladimir Chistiakov, Semyon Smirnov, Boris Nasedkin, Boris Pervushin, Daria Kargina, and et al. 2022. "The Rationale for the Optimal Continuous-Variable Quantum Key Distribution Protocol" Optics 3, no. 4: 338-351. https://doi.org/10.3390/opt3040030
APA StyleGoncharov, R., Vorontsova, I., Kirichenko, D., Filipov, I., Adam, I., Chistiakov, V., Smirnov, S., Nasedkin, B., Pervushin, B., Kargina, D., Samsonov, E., & Egorov, V. (2022). The Rationale for the Optimal Continuous-Variable Quantum Key Distribution Protocol. Optics, 3(4), 338-351. https://doi.org/10.3390/opt3040030