The State of the Art of Energy Harvesting and Storage in Silk Fibroin-Based Wearable and Implantable Devices
Abstract
:1. Introduction
2. Energy Harvesting and Storage in SF-Based Systems
2.1. Wearable Devices
2.1.1. Energy Storage Solutions
2.1.2. Energy Harvesting Solutions
2.2. Implantable Devices
Energy Storage Solutions
3. Discussion and Perspectives
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, B.; Wang, H.; Leow, W.R.; Cai, Y.; Loh, X.J.; Han, M.Y.; Chen, X. Silk fibroin for flexible electronic devices. Adv. Mater. 2016, 28, 4250–4265. [Google Scholar] [CrossRef] [PubMed]
- López Barreiro, D.; Martín-Moldes, Z.; Yeo, J.; Shen, S.; Hawker, M.J.; Martin-Martinez, F.J.; Kaplan, D.L.; Buehler, M.J. Conductive Silk-based composites using biobased carbon materials. Adv. Mater. 2019, 31. [Google Scholar] [CrossRef] [PubMed]
- Irimia-Vladu, M. “Green” electronics: Biodegradable and biocompatible materials and devices for sustainable future. Chem. Soc. Rev. 2014, 43, 588–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Fan, S.; Shao, H.; Hu, X.; Zhu, B.; Zhang, Y. Graphene Trapped silk scaffolds integrate high conductivity and stability. Carbon N. Y. 2019, 148, 16–27. [Google Scholar] [CrossRef]
- Wang, C.; Xia, K.; Zhang, Y.; Kaplan, D.L. Silk-based advanced materials for soft electronics. Acc. Chem. Res. 2019, 52, 2916–2927. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Mao, C.; Zhang, H. Highly conductive graphene-coated silk fabricated via a repeated coating-reduction approach. J. Mater. Chem. C 2015, 3, 4265–4268. [Google Scholar] [CrossRef]
- Lima, R.M.A.P.; Alcaraz-Espinoza, J.J.; Da Silva, F.A.G.; De Oliveira, H.P. Multifunctional wearable electronic textiles using cotton fibers with polypyrrole and carbon nanotubes. ACS Appl. Mater. Interfaces 2018, 10, 13783–13795. [Google Scholar] [CrossRef] [PubMed]
- Hwang, B.; Lund, A.; Tian, Y.; Darabi, S.; Darabi, S.; Müller, C.; Müller, C. Machine-washable conductive silk yarns with a composite coating of Ag nanowires and PEDOT:PSS. ACS Appl. Mater. Interfaces 2020, 12, 27537–27544. [Google Scholar] [CrossRef]
- Ye, C.; Ren, J.; Wang, Y.; Zhang, W.; Qian, C.; Han, J.; Zhang, C.; Jin, K.; Buehler, M.J.; Kaplan, D.L.; et al. Design and fabrication of silk templated electronic yarns and applications in multifunctional textiles. Matter 2019, 1, 1411–1425. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Li, C.; Yuan, W.; Shi, G. Strong composite films with layered structures prepared by casting silk fibroin-graphene oxide hydrogels. Nanoscale 2013, 5, 3780–3786. [Google Scholar] [CrossRef]
- Xia, Y.; Yun, L. Fabrication and properties of conductive conjugated polymers/silk fibroin composite fibers. Compos. Sci. Technol. 2008, 68, 1471–1479. [Google Scholar] [CrossRef]
- Wang, S.-D.; Ma, Q.; Wang, K.; Ma, P.-B. Strong and biocompatible three-dimensional porous silk fibroin/graphene oxide scaffold prepared by phase separation. Int. J. Biol. Macromol. 2018, 111, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Luo, J.; Liu, H.; Shi, L.; Welch, K.; Wang, Z.; Strømme, M. Electrochemically active, compressible, and conducting silk fibroin hydrogels. Ind. Eng. Chem. Res. 2020, 59, 9310–9317. [Google Scholar] [CrossRef]
- Romero, I.S.; Schurr, M.L.; Lally, J.V.; Kotlik, M.Z.; Murphy, A.R. Enhancing the interface in silk-polypyrrole composites through chemical modification of silk fibroin. ACS Appl. Mater. Interfaces 2013, 5, 553–564. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, U.; Maity, S.; Chatterjee, A. Polypyrrole-silk electro-conductive composite fabric by in situ chemical polymerization. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Cucchi, I.; Boschi, A.; Arosio, C.; Bertini, F.; Freddi, G.; Catellani, M. Bio-based conductive composites: Preparation and properties of polypyrrole (PPy)-coated silk fabrics. Synth. Met. 2009, 159, 246–253. [Google Scholar] [CrossRef]
- Padma Priya, S.; Rai, S.K. Studies on the mechanical performance of PMMA toughened epoxy-silk and PC toughened epoxy-silk fabric composites. J. Reinf. Plast. Compos. 2006, 25, 33–41. [Google Scholar] [CrossRef]
- Padma Priya, S.; Rai, S.K. Impact, compression, density, void content, and weight reduction studies on waste silk fabric/epoxy composites. J. Reinf. Plast. Compos. 2005, 24, 1605–1610. [Google Scholar] [CrossRef]
- Shudong Wang, Y.Z. Preparation of the silk fabric with ultraviolet protection and yellowing resistance using TiO2/La(III) composite nanoparticles. Fibers Polym. 2014, 15, 1129–1136. [Google Scholar] [CrossRef]
- Wang, Q.; Yan, S.; Han, G.; Li, X.; You, R.; Zhang, Q.; Li, M.; Kaplan, D.L. Facile production of natural silk nanofibers for electronic device applications. Compos. Sci. Technol. 2020, 187, 107950. [Google Scholar] [CrossRef]
- Cao, J.; Wang, C. Multifunctional surface modification of silk fabric via graphene oxide repeatedly coating and chemical reduction method. Appl. Surf. Sci. 2017, 405, 380–388. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, C.; Zhang, M.; Jian, M.; Zhang, Y. Feeding single-walled carbon nanotubes or graphene to silkworms for reinforced silk fibers. Nano Lett. 2016, 16, 6695–6700. [Google Scholar] [CrossRef] [PubMed]
- Han, K.I.; Kim, S.; Lee, I.G.; Kim, J.P.; Kim, J.H.; Hong, S.W.; Cho, B.J.; Hwang, W.S. Compliment graphene oxide coating on silk fiber surface via electrostatic force for capacitive humidity sensor applications. Sensors 2017, 17, 407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izyan Syazana Mohd Yusoff, N.; Uzir Wahit, M.; Jaafar, J.; Wong, T.-W. Characterization of graphene-silk fibroin composites film. Mater. Today Proc. 2018, 5, 21853–21860. [Google Scholar] [CrossRef]
- Hu, X.; Li, J.; Bai, Y. Fabrication of high strength graphene/regenerated silk fibroin composite fibers by wet spinning. Mater. Lett. 2017, 194, 224–226. [Google Scholar] [CrossRef]
- Sahu, V.; Grover, S.; Tulachan, B.; Sharma, M.; Srivastava, G.; Roy, M.; Saxena, M.; Sethy, N.; Bhargava, K.; Philip, D.; et al. Heavily nitrogen doped, graphene supercapacitor from silk cocoon. Electrochim. Acta 2015, 160, 244–253. [Google Scholar] [CrossRef]
- Long, C.; Zhuang, J.; Xiao, Y.; Zheng, M.; Hu, H.; Dong, H.; Lei, B.; Zhang, H.; Liu, Y. Nitrogen-doped porous carbon with an ultrahigh specific surface area for superior performance supercapacitors. J. Power Sources 2016, 310, 145–153. [Google Scholar] [CrossRef]
- Song, P.; Shen, X.; He, W.; Kong, L.; He, X.; Ji, Z.; Yuan, A.; Zhu, G.; Li, N. Protein-derived nitrogen-doped hierarchically porous carbon as electrode material for supercapacitors. J. Mater. Sci. Mater. Electron. 2018, 29, 12206–12215. [Google Scholar] [CrossRef]
- Liu, R.; Pan, L.; Wan, L.; Wu, D. An evaporation-induced tri-consistent assembly route towards nitrogen-doped carbon microfibers with ordered mesopores for high performance supercapacitors. Phys. Chem. Chem. Phys. 2015, 17, 4724–4729. [Google Scholar] [CrossRef]
- Zou, B.X.; Gao, Y.; Liu, B.; Yu, Y.; Lu, Y. Three dimensional heteroatom-doped carbon composite film for flexible solid-state supercapacitors. RSC Adv. 2016, 6, 4483–4489. [Google Scholar] [CrossRef]
- Ma, D.L.; Ma, Y.; Chen, Z.W.; Hu, A.M. A silk fabric derived carbon fibre net for transparent capacitive touch pads and all-solid supercapacitors. J. Mater. Chem. A 2017, 5, 20608–20614. [Google Scholar] [CrossRef]
- Yun, Y.S.; Cho, S.Y.; Shim, J.; Kim, B.H.; Chang, S.J.; Baek, S.J.; Huh, Y.S.; Tak, Y.; Park, Y.W.; Park, S.; et al. Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv. Mater. 2013, 25, 1993–1998. [Google Scholar] [CrossRef]
- Pereira, R.F.P.; Gonçalves, R.; Gonçalves, H.M.R.; Correia, D.M.; Costa, C.M.; Silva, M.M.; Lanceros-Méndez, S.; de Zea Bermudez, V. Plasma-Treated bombyx mori cocoon separators for high-performance and sustainable lithium-ion batteries. Mater. Today Sustain. 2020, 9, 100041. [Google Scholar] [CrossRef]
- Zhang, L.; Meng, Z.; Qi, Q.; Yan, W.; Lin, N.; Liu, X.Y. Aqueous supercapacitors based on carbonized silk electrodes. RSC Adv. 2018, 8, 22146–22153. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Zeng, X.; Zhang, X.; Yang, Z. 3D Silk fibroin/carbon nanotube array composite matrix for flexible solid-state supercapacitors. New J. Chem. 2020, 44, 6575–6582. [Google Scholar] [CrossRef]
- Hu, M.; Hu, T.; Cheng, R.; Yang, J.; Cui, C.; Zhang, C.; Wang, X. MXene-coated silk-derived carbon cloth toward flexible electrode for supercapacitor application. J. Energy Chem. 2018, 27, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Hou, J.; Cao, C.; Idrees, F.; Ma, X. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 2015, 9, 2556–2564. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Song, Y.; Wang, Y.; Chen, X.; Xia, Y.; Shao, Z. Graphene/silk fibroin based carbon nanocomposites for high performance supercapacitors. J. Mater. Chem. A 2015, 3, 773–781. [Google Scholar] [CrossRef]
- Li, X.; Sun, C.; Cai, Z.; Ge, F. High-performance all-solid-state supercapacitor derived from PPy coated carbonized silk fabric. Appl. Surf. Sci. 2019, 473, 967–975. [Google Scholar] [CrossRef]
- Jiang, D.; Zhang, J.; Li, C.; Yang, W.; Liu, J. A simple and large-scale method to prepare flexible hollow graphene fibers for a high-performance all-solid fiber supercapacitor. New J. Chem. 2017, 41, 11792–11799. [Google Scholar] [CrossRef]
- Rath, T.; Pramanik, N.; Kumar, S. High Electrochemical performance flexible solid-state supercapacitor based on co-doped reduced graphene oxide and silk fibroin composites. Energy 2017, 141, 1982–1988. [Google Scholar] [CrossRef]
- Yun, Y.S.; Cho, S.Y.; Jin, H.J. Carbon aerogels based on regenerated silk proteins and graphene oxide for supercapacitors. Macromol. Res. 2014, 22, 509–514. [Google Scholar] [CrossRef]
- Ma, R.; Gordon, D.; Yushin, G.; Tsukruk, V.V. Robust and flexible micropatterned electrodes and micro-supercapacitors in graphene–silk biopapers. Adv. Mater. Interfaces 2018, 5. [Google Scholar] [CrossRef]
- Ji, Y.; Li, Y.; Chen, G.; Xing, T. Fire-resistant and highly electrically conductive silk fabrics fabricated with reduced graphene oxide via dry-coating. Mater. Des. 2017, 133, 528–535. [Google Scholar] [CrossRef]
- Sun, C.; Li, X.; Zhao, J.; Cai, Z.; Ge, F. A Freestanding polypyrrole hybrid electrode supported by conducting silk fabric coated with PEDOT:PSS and MWCNTs for high-performance supercapacitor. Electrochim. Acta 2019, 317, 42–51. [Google Scholar] [CrossRef]
- Song, P.; Tao, J.; He, X.; Sun, Y.; Shen, X.; Zhai, L.; Yuan, A.; Zhang, D.; Ji, Z.; Li, B. Silk-inspired stretchable fiber-shaped supercapacitors with ultrahigh volumetric capacitance and energy density for wearable electronics. Chem. Eng. J. 2020, 386, 124024. [Google Scholar] [CrossRef]
- Cao, J.; Wang, C. Highly conductive and flexible silk fabric via electrostatic self assemble between reduced graphene oxide and polyaniline. Org. Electron. 2018, 55, 26–34. [Google Scholar] [CrossRef]
- Zhang, H.; Qiao, Y.; Lu, Z. Fully Printed ultraflexible supercapacitor supported by a single-textile substrate. ACS Appl. Mater. Interfaces 2016, 8, 32317–32323. [Google Scholar] [CrossRef]
- Das, C.; Krishnamoorthy, K. Flexible microsupercapacitors using silk and cotton substrates. ACS Appl. Mater. Interfaces 2016, 8, 29504–29510. [Google Scholar] [CrossRef]
- Tang, B.; Sun, L.; Kaur, J.; Yu, Y.; Wang, X. In-situ synthesis of gold nanoparticles for multifunctionalization of silk fabrics. Dyes Pigments 2014, 103, 183–190. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, G.; Li, M.Y.; Yin, Y.X.; Li, J.Y.; Li, G.; Wang, W.P.; Peng, W.; Cao, F.F.; Guo, Y.G. Porous carbon for high-energy density symmetrical supercapacitor and lithium-ion hybrid electrochemical capacitors. Chem. Eng. J. 2019, 375, 122020. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, A.; Liang, H.; Liu, R.; Cai, J.; Cui, L.; Liu, J. Novel fabrication of hollow and spinous NiCo 2 S 4 nanotubes templated by natural silk for all-solid-state asymmetric supercapacitors. J. Colloid Interface Sci. 2019, 549, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, J.; Che, L.; Chen, S.; Wang, Z.; Zhou, X. Toward large-scale fabrication of triboelectric nanogenerator (TENG) with silk-fibroin patches film via spray-coating process. Nano Energy 2017, 41, 359–366. [Google Scholar] [CrossRef]
- Sencadas, V.; Garvey, C.; Mudie, S.; Kirkensgaard, J.J.K.; Gouadec, G.; Hauser, S. Electroactive Properties of electrospun silk fibroin for energy harvesting applications. Nano Energy 2019, 66, 104106. [Google Scholar] [CrossRef]
- Kim, K.N.; Chun, J.; Chae, S.A.; Ahn, C.W.; Kim, I.W.; Kim, S.W.; Wang, Z.L.; Baik, J.M. Silk fibroin-based biodegradable piezoelectric composite nanogenerators using lead-free ferroelectric nanoparticles. Nano Energy 2014, 14, 87–94. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, H.; Mao, C.; Li, C.M. Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body. Appl. Energy 2016, 164, 57–63. [Google Scholar] [CrossRef]
- Zhang, X.S.; Guo, Y.B.; Wang, Y.; Zhang, H.; Brugger, J. A Transparent silk-fibroin-based triboelectric microgenerator for airflow energy harvesting. In Proceedings of the 2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems, NEMS, Los Angeles, CA, USA, 9–12 April 2017; pp. 65–68. [Google Scholar]
- Tulachan, B.; Meena, S.K.; Rai, R.K.; Mallick, C.; Kusurkar, T.S.; Teotia, A.K.; Sethy, N.K.; Bhargava, K.; Bhattacharya, S.; Kumar, A.; et al. Electricity from the silk cocoon membrane. Sci. Rep. 2014, 4, 5434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nambajjwe, C.; Musinguzi, W.B.; Rwahwire, S.; Kasedde, A.; Namuga, C.; Nibikora, I. Improving electricity from silk cocoons through feeding silkworms with silver nanoparticles. Mater. Today Proc. 2020, 28, 1221–1226. [Google Scholar] [CrossRef]
- Mi, H.Y.; Li, H.; Jing, X.; He, P.; Feng, P.Y.; Tao, X.; Liu, Y.; Liu, C.; Shen, C. Silk and silk composite aerogel-based biocompatible triboelectric nanogenerators for efficient energy harvesting. Ind. Eng. Chem. Res. 2020, 59, 12399–12408. [Google Scholar] [CrossRef]
- Gogurla, N.; Roy, B.; Park, J.Y.; Kim, S. Skin-contact actuated single-electrode protein triboelectric nanogenerator and strain sensor for biomechanical energy harvesting and motion sensing. Nano Energy 2019, 62, 674–681. [Google Scholar] [CrossRef]
- Wen, D.L.; Liu, X.; Deng, H.T.; Sun, D.H.; Qian, H.Y.; Brugger, J.; Zhang, X.S. Printed silk-fibroin-based triboelectric nanogenerators for multi-functional wearable sensing. Nano Energy 2019, 66, 104123. [Google Scholar] [CrossRef]
- Zhang, X.S.; Brugger, J.; Kim, B. A silk-fibroin-based transparent triboelectric generator suitable for autonomous sensor network. Nano Energy 2016, 20, 37–47. [Google Scholar] [CrossRef]
- Luo, Y.; Li, Y.; Feng, X.; Pei, Y.; Zhang, Z.; Wang, L.; Zhao, Y.; Lu, B.; Zhu, B. Triboelectric nanogenerators with porous and hierarchically structured silk fibroin films via water electrospray-etching technology. Nano Energy 2020, 75, 104974. [Google Scholar] [CrossRef]
- Niu, Q.; Huang, L.; Lv, S.; Shao, H.; Fan, S.; Zhang, Y. Pulse-driven bio-triboelectric nanogenerator based on silk nanoribbons. Nano Energy 2020, 74, 104837. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, J.H.; Jun, K.W.; Kim, J.H.; Seung, W.C.; Kwon, O.H.; Park, J.Y.; Kim, S.W.; Oh, I.K. Silk nanofiber-networked bio-triboelectric generator: Silk Bio-TEG. Adv. Energy Mater. 2016, 6. [Google Scholar] [CrossRef]
- Ye, C.; Dong, S.; Ren, J.; Ling, S. Ultrastable and high-performance silk energy harvesting textiles. Nano-Micro Lett. 2020, 12. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yu, H.; Liu, H.; Fan, Y. Double coating of graphene oxide–polypyrrole on silk fibroin scaffolds for neural tissue engineering. J. Bioact. Compat. Polym. 2020, 35, 216–227. [Google Scholar] [CrossRef]
- Jia, X.; Wang, C.; Zhao, C.; Ge, Y.; Wallace, G.G. Toward Biodegradable mg-air bioelectric batteries composed of silk fibroin-polypyrrole film. Adv. Funct. Mater. 2016, 26, 1454–1462. [Google Scholar] [CrossRef] [Green Version]
- Majumder, S.; Dahiya, U.R.; Yadav, S.; Sharma, P.; Ghosh, D.; Rao, G.K.; Rawat, V.; Kumar, G.; Kumar, A.; Srivastava, C.M. Zinc oxide nanoparticles functionalized on hydrogel grafted silk fibroin fabrics as efficient composite dressing. Biomolecules 2020, 10, 710. [Google Scholar] [CrossRef]
- Xin, W.; Zhang, Z.; Huang, X.; Hu, Y.; Zhou, T.; Zhu, C.; Kong, X.Y.; Jiang, L.; Wen, L. High-performance silk-based hybrid membranes employed for osmotic energy conversion. Nat. Commun. 2019, 10. [Google Scholar] [CrossRef]
- Pereira, R.F.P.; Gonçalves, R.; Fernandes, M.; Costa, C.M.; Silva, M.M.; de Zea Bermudez, V.; Lanceros-Mendez, S. Bombyx Mori silkworm cocoon separators for lithium-ion batteries with superior safety and sustainability. Adv. Sustain. Syst. 2018, 2, 1800098. [Google Scholar] [CrossRef]
- Fernandes, T.C.D.; Rodrigues, H.M.R.; Paz, F.A.A.; Sousa, J.F.M.; Valente, A.J.M.; Silva, M.M.; de Zea Bermudez, V.; Pereira, R.F.P. Highly conducting bombyx mori silk fibroin-based electrolytes incorporating glycerol, dimethyl sulfoxide and [Bmim]PF 6. J. Electrochem. Soc. 2020, 167, 070551. [Google Scholar] [CrossRef]
- Pereira, R.F.P.; Brito-Pereira, R.; Gonçalves, R.; Silva, M.P.; Costa, C.M.; Silva, M.M.; De Zea Bermudez, V.; Lanceros-Méndez, S. Silk fibroin separators: A step toward lithium-ion batteries with enhanced sustainability. ACS Appl. Mater. Interfaces 2018, 10, 5385–5394. [Google Scholar] [CrossRef] [PubMed]
- Reizabal, A.; Gonçalves, R.; Fidalgo-Marijuan, A.; Costa, C.M.; Pérez, L.; Vilas, J.L.; Lanceros-Mendez, S. Tailoring silk fibroin separator membranes pore size for improving performance of lithium ion batteries. J. Membr. Sci. 2020, 598, 117678. [Google Scholar] [CrossRef]
- Jia, X.; Wang, C.; Ranganathan, V.; Napier, B.; Yu, C.; Chao, Y.; Forsyth, M.; Omenetto, F.G.; Macfarlane, D.R.; Wallace, G.G. A biodegradable thin-film magnesium primary battery using silk fibroin-ionic liquid polymer electrolyte. ACS Energy Lett. 2017, 2, 831–836. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.; Yu, P.; Jian, M.; Wang, H.; Wang, H.; Liang, X.; Zhang, Y. Molybdenum disulfide nanosheets aligned vertically on carbonized silk fabric as smart textile for wearable pressure-sensing and energy devices. ACS Appl. Mater. Interfaces 2020, 12, 11825–11832. [Google Scholar] [CrossRef] [PubMed]
- Pan, P.; Hu, Y.; Wu, K.; Cheng, Z.; Shen, Z.; Jiang, L.; Mao, J.; Ni, C.; Ge, Y.; Wang, Z. Growth of ZnCo2O4 nanocubes on flexible biochar substrate derived from natural silk waste fabric for lithium-ion battery anode. J. Alloys Compd. 2020, 814, 152306. [Google Scholar] [CrossRef]
- Wang, C.; Xie, N.H.; Zhang, Y.; Huang, Z.; Xia, K.; Wang, H.; Guo, S.; Xu, B.Q.; Zhang, Y. Silk-derived highly active oxygen electrocatalysts for flexible and rechargeable zn-air batteries. Chem. Mater. 2019, 31, 1023–1029. [Google Scholar] [CrossRef]
- Xiang, M.; Wang, Y.; Wu, J.; Guo, Y.; Wu, H.; Zhang, Y.; Liu, H. Natural silk cocoon derived nitrogen-doped porous carbon nanosheets for high performance lithium-sulfur batteries. Electrochim. Acta 2017, 227, 7–16. [Google Scholar] [CrossRef]
- De Oliveira, H.P.; Sydlik, S.A.; Swager, T.M. Supercapacitors from free-standing polypyrrole/graphene nanocomposites. J. Phys. Chem. 2013, 20, 10270–10276. [Google Scholar] [CrossRef] [Green Version]
Materials | Energy Density/ | Specific Capacitance | Capacitance Retention | Reference |
---|---|---|---|---|
Power Density | ||||
Porous carbon obtained from silkworm excrement at700 °C | 138.4 Wh/kg | 378.5 F/g | 66.10% | [51] |
495.9 W/kg | (0.5 A/g) | (9000 cycles) | ||
Nitrogen-Doped | 102 Wh/kg | 242 F/g | 91% | [37] |
Carbon Nanosheets Derived from Silk | - | (10,000 cycles) | ||
Silk proteins and graphene oxide carbon aerogels | 63 Wh/kg | 298 F/g | 92.1% | [42] |
20 kW/kg | (5000 cycles) | |||
NiCo2S4 nanotubes templated by natural silk | 52.34 Wh/kg | 158.89 F/g | 85.65% | [52] |
2206.37 W/kg | (1 A/g) | (3000 cycles at 10 A/g) | ||
Poly(3,4-ethylenedioxythiophene)/gold coated silk fiber (PEDOT-GSFs10) | 44 Wh/kg | 500 F/g | 80% | [49] |
2458 W/kg | (10,000 cycles) | |||
Nitrogen-doped porous carbon activated at 700 °C | 33.6 Wh/kg | - | - | [27] |
- | ||||
Co-doped reduced graphene (co-rGO)-silk fibroin composite film | 28.31 Wh/kg | 104 F/g | 89% | [41] |
78.24 kW/kg | (0.5 A/g) | (10,000 cycles) | ||
Graphene/Silk Fibroin Based Carbon Nanocomposite | 22.8 Wh/kg | 230 F/g | - | [38] |
200 W/kg | (1 A/g) | |||
Three dimensional (3D) heteroatom-doped active carbon | 17.2 Wh/kg | 48.6 F/g | 116% | [30] |
207 W/kg | (0.7 mA/cm2) | (10,000 cycles) | ||
Carbonized silk at 850 °C | 14.33 Wh/kg | 178 F/g | - | [34] |
251 W/kg | (0.5 A/g) | |||
Flexible all-solid hollow graphene fiber supercapacitor | 2.64 Wh/kg | 76.1 F/g | 90.50% | [40] |
- | (1 A/g) | (2000 cycles) | ||
Polypyrrole/carbonized silk fabric | 6.88 mWh/cm3 | 666.78 mF/cm2 | 47% | [39] |
0.04 W/cm3 | (2 mA/cm2) | (500 cycles) |
Samples | Vout_max/ | Pdensity (W/m2) | Internal Resistance (MΩ) | Ref. |
---|---|---|---|---|
Pout_max | ||||
Indium tin oxide (ITO) coated polyethylene terephthalate(PET)/PDMS/Silk fibroin triboelectric microgenerator TEMG | 35 V/ | 864 | 8 | [57] |
162 µW | ||||
Silver nanowire (AgNW)/Silk fibroin TENG | 40 V/ | 20 | 1 | [61] |
- | ||||
Printed Silk Fibroin -TENG | 666 V/ | 4.12 | 10 | [62] |
4.21 mW | ||||
Silk Fibroin/PET/ITO triboelectric generator (TEG) | 268 V/ | 1.936 | 40 | [63] |
1.55 mW | ||||
Indium tin oxide (ITO) coated polyethylene terephthalate(PET)/SF | 260 V/ | 1.615 | 30 | [64] |
0.65 mW | ||||
Carbon nanofibers/Silk | 11.8 V/ | 0.37 | 0.001–10 | [60] |
- | ||||
nascent silk nanoribbon film/regenerative silk fibroin film (SNRF/RSFF) | 41.64 V/ | 0.0867 | 100 | [65] |
- | ||||
SF/Indium tin oxide (ITO) coated polyethylene terephthalate(PET) | 218.1 V/ | 0.068 | 0.1–100 | [53] |
Silk/Pl/Al | - | 0.0043 | 5 | [66] |
silk fiber/stainless steel fiber and polytetrafuoroethylene fiber/stainless steel fiber | 27 V/ - | 0.0035 | 50 | [67] |
- |
Material | Discharge Capacity | Reference |
---|---|---|
MoS2/Carbonized Silk electrode | 2895 mAh/g | [77] |
Hierarchical porous nitrogen doped carbon nanosheets | 1865 mAh/g | [37] |
ZnCo2O4 nanocubes–CSF | 778 mAh/g | [78] |
Silk derived substrates for Zn-Air batteries | 614.7 mAh/g | [79] |
Nano porous carbon nanosheets | 383 mAh/g | [80] |
Battery separators based on silk fibroin sponges prepared by lyophilization | 126 mAh/g | [74] |
Silk fibroin separator membranes for lithium-ion batteries | 131.3 mAh/g | [75] |
Bombyx mori cocoon separators for high-performance and sustainable lithium-ion batteries | 96.7 mAh/g | [33] |
Bombyx mori silkworm cocoons separators for lithium (Li)-ion batteries | 86 mAh/g | [72] |
Mg-Air Biobatteries of silk fiber – polypyrrole(SF-PPy) Film | 3.79 mAh/cm2 | [69] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, R.M.A.P.; de Oliveira, M.C.A.; de Oliveira, H.P. The State of the Art of Energy Harvesting and Storage in Silk Fibroin-Based Wearable and Implantable Devices. Electrochem 2020, 1, 344-357. https://doi.org/10.3390/electrochem1040022
Lima RMAP, de Oliveira MCA, de Oliveira HP. The State of the Art of Energy Harvesting and Storage in Silk Fibroin-Based Wearable and Implantable Devices. Electrochem. 2020; 1(4):344-357. https://doi.org/10.3390/electrochem1040022
Chicago/Turabian StyleLima, Ravi Moreno Araújo Pinheiro, Mário César Albuquerque de Oliveira, and Helinando Pequeno de Oliveira. 2020. "The State of the Art of Energy Harvesting and Storage in Silk Fibroin-Based Wearable and Implantable Devices" Electrochem 1, no. 4: 344-357. https://doi.org/10.3390/electrochem1040022
APA StyleLima, R. M. A. P., de Oliveira, M. C. A., & de Oliveira, H. P. (2020). The State of the Art of Energy Harvesting and Storage in Silk Fibroin-Based Wearable and Implantable Devices. Electrochem, 1(4), 344-357. https://doi.org/10.3390/electrochem1040022