Removal of Cyanotoxins–Microcystins from Water by Filtration through Granulated Composites of Bentonite with Micelles of the Cation Octadecyltrimethyl Ammonium (ODTMA)
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Removal of MC-LR from Water
3.2. Co-Removal of MC Congeners Originating from Biological Sources
3.3. Fitting the Filtration Model to Experimental Results and Estimation of Adsorption Capacity
3.4. Model Calculations for Filtration of Solutions with Several MCs
3.5. Simulation and Prediction of Toxin Filtration by the ODTMA–Bentonite Granulated Complex—Summary of Kinetic Parameters
3.6. The Capacity of the ODTMA–Bentonite Complex for Filtration of Microcystin Solutions
3.7. Granulated Activated Carbon (GAC) to Complement MC Removal by ODTMA–Bentonite Granulated Complex
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harke, M.J.; Steffen, M.M.; Gobler, C.J.; Otten, T.G.; Wilhelm, S.W.; Wood, S.A.; Paerl, H.W. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 2016, 54, 4–20. [Google Scholar] [CrossRef] [Green Version]
- Meriluoto, J.; Spoof, L.; Codd, G.A. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Díez-Quijada, L.; Prieto, A.I.; Guzmán-Guillén, R.; Jos, A.; Cameán, A.M. Occurrence and toxicity of microcystin congeners other than MC-LR and MC-RR: A review. Food Chem. Toxicol. 2019, 125, 106–132. [Google Scholar] [CrossRef]
- Westrick, J.A.; Szlag, D.C.; Southwell, B.J.; Sinclair, J. A review of cyanobacteria and cyanotoxins removal/inactivation in drinking water treatment. Anal. Bioanal. Chem. 2010, 397, 1705–1714. [Google Scholar] [CrossRef]
- Szlag, D.; Sinclair, J.; Southwell, B.; Westrick, J. Cyanobacteria and cyanotoxins occurrence and removal from five high-risk conventional treatment drinking water plants. Toxins 2015, 7, 2198–2220. [Google Scholar] [CrossRef] [Green Version]
- Sukenik, A.; Viner-Mozzini, Y.; Tavassi, M.; Nir, S. Removal of cyanobacteria and cyanotoxins from lake water by composites of bentonite with micelles of the cation octadecyltrimethyl ammonium (ODTMA). Water Res. 2017, 120, 165–173. [Google Scholar] [CrossRef]
- Shtarker-Sasi, A.; Castro-Sowinski, S.; Matan, O.; Kagan, T.; Nir, S.; Okon, Y.; Nasser, A.M. Removal of bacteria and Cryptosporidium from water by micelle–montmorillonite complexes. Desalination Water Treat. 2013, 51, 7672–7680. [Google Scholar] [CrossRef]
- Nir, S.; Brook, I.; Anavi, Y.; Ryskin, M.; Ben-Ari, J.; Shveky-Huterer, R.; Etkin, H.; Zadaka-Amir, D.; Shuali, U. Water purification from perchlorate by a micelle–clay complex: Laboratory and pilot experiments. Appl. Clay Sci. 2015, 114, 151–156. [Google Scholar] [CrossRef]
- Rakovitsky, N.; Brook, I.; Van Rijn, J.; Ryskin, M.; Mkhweli, Z.; Etkin, H.; Nir, S. Purification of greywater by a moving bed reactor followed by a filter including a granulated micelle-clay composite. Appl. Clay Sci. 2016, 132, 267–272. [Google Scholar] [CrossRef]
- Kalfa, A.; Rakovitsky, N.; Tavassi, M.; Ryskin, M.; Ben-Ari, J.; Etkin, H.; Shuali, U.; Nir, S. Removal of Escherichia coli and total bacteria from water by granulated micelle-clay complexes: Filter regeneration and modeling of filtration kinetics. Appl. Clay Sci. 2017, 147, 63–68. [Google Scholar] [CrossRef]
- Mishael, Y.G.; Undabeytia, T.; Rabinovitz, O.; Rubin, B.; Nir, S. Slow-release formulations of sulfometuron incorporated in micelles adsorbed on montmorillonite. J. Agric. Food Chem. 2002, 50, 2864–2869. [Google Scholar] [CrossRef] [Green Version]
- Stanier, R.Y.; Kunisawa, R.; Mandel, M.; Cohen-Bazire, G. Purification and properties of unicellular blue-green algae (order chroococcales). Bacteriol. Rev. 1971, 35, 171–205. [Google Scholar] [CrossRef]
- Ninio, S.; Lupu, A.; Viner-Mozzini, Y.; Zohary, T.; Sukenik, A. Multiannual variations in Microcystis bloom episodes—Temperature drives shift in species composition. Harmful Algae 2020, 92, 101710. [Google Scholar] [CrossRef]
- Nir, S.; Ryskin, M. Method of Making and Using Granulated Micelle-Clay Complexes for Removal of Pollutants from Water. U.S. Patent 10384959, 20 August 2019. [Google Scholar]
- Lawton, L.A.; Edwards, C.; Codd, G.A. Extraction and high-performance liquid chromatographic method for the determination of microcystins in raw and treated waters. Analyst 1994, 119, 1525–1530. [Google Scholar] [CrossRef]
- Flores, C.; Caixach, J. Analysis of microcystins by online solid phase extraction–liquid chromatography tandem mass spectrometry. In Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis; Meriluoto, J., Spoof, L., Codd, G.A., Eds.; John Wiley and Sons: Chichester, UK, 2017; pp. 362–371. [Google Scholar]
- Nir, S.; Zadaka-Amir, D.; Kartaginer, A.; Gonen, Y. Simulation of adsorption and flow of pollutants in a column filter: Application to micelle–montmorillonite mixtures with sand. Appl. Clay Sci. 2012, 67, 134–140. [Google Scholar] [CrossRef]
- Smoluchowski, M. Mathematical theory of the kinetics of the coagulation of colloidal solutions. Z. Phys. Chem. 1917, 92, 129–168. [Google Scholar]
- Fuchs, N. Zur theorie der koagulation. Z. Phys. Chem. 1934, 171, 199–208. [Google Scholar] [CrossRef]
- Nir, S.; Bentz, J.; Wilschut, J.; Duzgunes, N. Aggregation and fusion of phospholipid vesicles. Prog. Surf. Sci. 1983, 13, 1–124. [Google Scholar] [CrossRef]
- Nir, S.; Shuali, U. Water Purification by Micelle-Clay Nano-Particles; Nova Science Publishers: New York, NY, USA, 2019. [Google Scholar]
- Drogui, P.; Daghrir, R.; Simard, M.-C.; Sauvageau, C.; Blais, J.F. Removal of microcystin-LR from spiked water using either activated carbon or anthracite as filter material. Environ. Technol. 2012, 33, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Cook, D.; Newcombe, G. Comparison and modeling of the adsorption of two microcystin analogues onto powdered activated carbon. Environ. Technol. 2008, 29, 525–534. [Google Scholar] [CrossRef]
- Pham, T.-L.; Dang, T.N. Microcystins in freshwater ecosystems: Occurrence, distribution, and current treatment approaches. In Water and Wastewater Treatment Technologies, Energy, Environment, and Sustainability; Bui, X.-T., Chiemchaisri, C., Fujioka, T., Varjani, S., Eds.; Springer Nature: Singapore, 2019; pp. 15–36. [Google Scholar]
- Roegner, A.F.; Brena, B.; González-Sapienza, G.; Puschner, B. Microcystins in potable surface waters: Toxic effects and removal strategies. J. Appl. Toxicol. 2014, 34, 441–457. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ho, L.; Lewis, D.M.; Brookes, J.D.; Newcombe, G. Discriminating and assessing adsorption and biodegradation removal mechanisms during granular activated carbon filtration of microcystin toxins. Water Res. 2007, 41, 4262–4270. [Google Scholar] [CrossRef] [PubMed]
- Cheriker, H.; Bauer, T.S.; Oren, Y.; Nir, S.; Hayouka, Z. Immobilized random peptide mixtures exhibit broad antimicrobial activity with high selectivity. Chem. Commun. 2020, 56, 11022–11025. [Google Scholar] [CrossRef]
MC Source | DOC (μg/L) | Total MC (μg/L) | Major MC Congeners (μg/L) | |||||
---|---|---|---|---|---|---|---|---|
MC-LR | MC-YR | MC-RR | MC [D-Asp3]-RR | MC-WR | MC [D-Asp3]-WR | |||
M. aeruginosa C1004—Early exponential phase | 5.8 | 250 | n.f. | n.f. | 37 | 17 | 112 | 84 |
M. aeruginosa C1004—Mid-exponential phase | 8.0 | 242 | n.f. | n.f. | 87 | 35 | 73 | 47 |
M. aeruginosa C1004—Late stationary phase | 38.0 | 1553 | n.f. | n.f | 117 | 204 | 383 | 829 |
LK population | 3.3 | 152 | 83 | 43 | 26 | n.f. | n.f. | n.f. |
M. aeruginosa PCC7806 | 3.3 | 49 | 49 | n.f. | n.f. | n.f. | n.f. | n.f. |
MC Type and Conc. (µg/L) | R0 (M) | C1 (M−1 min−1) | D1 (min−1) | K (M−1) | Data Presented in |
---|---|---|---|---|---|
MC-LR, 10 | 0.0027 | 3000 | 0.003 | 106 | Figure 1A/Figure 4, B1 |
MC-LR, 100 | 0.00015 | 8000 | 0.008 | 106 | Figure 1B/Figure 5, B1 |
MC-LR, 5.5 | 0.005 | 8000 | 0.003 | 2.7 × 106 | Figure 2/Figure 6, B2 |
MC-LR, 26.7 | 0.005 | 8000 | 0.003 | 2.7 × 106 | Figure 2/Figure 6, B2 |
MC-LR, 62 | 0.005 | 8000 | 0.005/0.003 | 1.6 × 106/2.7 × 106 | Figure 2/Figure 6, B2 |
MC-LR, 83 MC-YR, 43 MC-RR, 25.9 | 0.005 | 8000 8000 350 | 0.005 0.005 0.0075 | 1.6 × 106 1.6 × 106 4.7 × 104 | Figure 3/Figure 7 |
MC-WR MC-RR | 0.002 | 1300 350 | 0.0012 0.0075 | 1.1 × 106 4.7 × 104 | Figure 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sukenik, A.; Viner-Mozzini, Y.; Mizrahi, D.; Tamam, I.; Benitez, A.R.; Nir, S. Removal of Cyanotoxins–Microcystins from Water by Filtration through Granulated Composites of Bentonite with Micelles of the Cation Octadecyltrimethyl Ammonium (ODTMA). Appl. Nano 2021, 2, 67-81. https://doi.org/10.3390/applnano2010006
Sukenik A, Viner-Mozzini Y, Mizrahi D, Tamam I, Benitez AR, Nir S. Removal of Cyanotoxins–Microcystins from Water by Filtration through Granulated Composites of Bentonite with Micelles of the Cation Octadecyltrimethyl Ammonium (ODTMA). Applied Nano. 2021; 2(1):67-81. https://doi.org/10.3390/applnano2010006
Chicago/Turabian StyleSukenik, Assaf, Yehudit Viner-Mozzini, Daniel Mizrahi, Imri Tamam, Ana R. Benitez, and Shlomo Nir. 2021. "Removal of Cyanotoxins–Microcystins from Water by Filtration through Granulated Composites of Bentonite with Micelles of the Cation Octadecyltrimethyl Ammonium (ODTMA)" Applied Nano 2, no. 1: 67-81. https://doi.org/10.3390/applnano2010006
APA StyleSukenik, A., Viner-Mozzini, Y., Mizrahi, D., Tamam, I., Benitez, A. R., & Nir, S. (2021). Removal of Cyanotoxins–Microcystins from Water by Filtration through Granulated Composites of Bentonite with Micelles of the Cation Octadecyltrimethyl Ammonium (ODTMA). Applied Nano, 2(1), 67-81. https://doi.org/10.3390/applnano2010006