Placental Maternal Vascular Malperfusion Is Associated with Prepregnancy and Early Pregnancy Maternal Cardiovascular and Thrombotic Profiles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physiologic Measures
2.2. Thrombin Generation and Biomarkers
2.3. Placental Examination
2.4. Statistical Analyses
3. Results
3.1. Pregnancy Outcomes
3.2. Decidual Arteriopathy (DA)
3.3. Infarcts and Agglutination (INFAGG)
3.4. Accelerated Villous Maturation (AVM)
3.5. Distal Villous Hypoplasia (DVH)
3.6. Placental Hypoplasia
3.7. MVM Composite Score
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burton, G.J.; Jauniaux, E. Pathophysiology of placental-derived fetal growth restriction. Am. J. Obstet. Gynecol. 2018, 218, S745–S761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendrix, M.L.E.; Bons, J.A.P.; Alers, N.O.; Severens-Rijvers, C.A.H.; Spaanderman, M.E.A.; Al-Nasiry, S. Maternal vascular malformation in the placenta is an indicator for fetal growth restriction irrespective of neonatal birthweight. Placenta 2019, 87, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Zur, R.L.; Kingdom, J.C.; Parks, W.T.; Hobson, S.R. The Placental Basis of Fetal Growth Restriction. Obstet. Gynecol. Clin. N. Am. 2020, 47, 81–98. [Google Scholar] [CrossRef] [PubMed]
- Helfrich, B.B.; Chilukuri, N.; He, H.; Cerda, S.R.; Hong, X.; Wang, G.; Pearson, C.; Burd, I.; Wang, X. Maternal vascular malperfusion of the placental bed associated with hypertensive disorders in the Boston Birth Cohort. Placenta 2017, 52, 106–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chappell, L.C.; Cluver, C.A.; Kingdom, J.; Tong, S. Pre-eclampsia. Lancet 2021, 398, 341–354. [Google Scholar] [CrossRef]
- Khong, T.Y.; Mooney, E.E.; Ariel, I.; Balmus, N.C.M.; Boyd, T.K.; Brundler, M.-A.; Derricott, H.; Evans, M.J.; Faye-Petersen, O.M.; Gillan, J.E.; et al. Sampling and Definitions of Placental Lesions: Amsterdam Placental Workshop Group Consensus Statement. Arch. Pathol. Lab. Med. 2016, 140, 698–713. [Google Scholar] [CrossRef] [Green Version]
- Ogge, G.; Chaiworapongsa, T.; Romero, R.; Hussein, Y.; Kusanovic, J.P.; Yeo, L.; Kim, C.J.; Hassan, S.S. Placental lesions associated with maternal underperfusion are more frequent in early-onset than in late-onset preeclampsia. J. Perinat. Med. 2011, 39, 641–652. [Google Scholar] [CrossRef]
- Romero, R.; Kim, Y.M.; Pacora, P.; Kim, C.J.; Benshalom-Tirosh, N.; Jaiman, S.; Bhatti, G.; Kim, J.-S.; Qureshi, F.; Jacques, S.M.; et al. The frequency and type of placental histologic lesions in term pregnancies with normal outcome. J. Perinat. Med. 2018, 46, 613–630. [Google Scholar] [CrossRef] [Green Version]
- Ernst, L.M. Maternal vascular malperfusion of the placental bed. APMIS 2018, 126, 551–560. [Google Scholar] [CrossRef] [Green Version]
- Schoots, M.H.; Gordijn, S.J.; Scherjon, S.A.; van Goor, H.; Hillebrands, J.-L. Oxidative stress in placental pathology. Placenta 2018, 69, 153–161. [Google Scholar] [CrossRef]
- Hale, S.A.; Schonberg, A.; Badger, G.J.; Bernstein, I.M. Relationship between prepregnancy and early pregnancy uterine blood flow and resistance index. Reprod. Sci. 2009, 16, 1091–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- BBernstein, I.M.; Ziegler, W.F.; Leavitt, T.; Badger, G.J. Uterine artery hemodynamic adaptations through the menstrual cycle into early pregnancy. Obstet. Gynecol. 2002, 99, 620–624. [Google Scholar]
- Hale, S.; Choate, M.; Schonberg, A.; Shapiro, R.; Badger, G.; Bernstein, I.M. Pulse pressure and arterial compliance prior to pregnancy and the development of complicated hypertension during pregnancy. Reprod. Sci. 2010, 17, 871–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hale, S.A.; Badger, G.J.; McBride, C.; Magness, R.; Bernstein, I.M. Prepregnancy Vascular Dysfunction in Women who Subsequently Develop Hypertension During Pregnancy. Pregnancy Hypertens. 2013, 3, 140–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atlass, J.; Menke, M.; Parks, W.T.; Catov, J.M. Pre-conception blood pressure and evidence of placental malperfusion. BMC Pregnancy Childbirth 2020, 20, 25. [Google Scholar] [CrossRef] [Green Version]
- Parks, W.T.; Catov, J.M. The Placenta as a Window to Maternal Vascular Health. Obstet. Gynecol. Clin. N. Am. 2020, 47, 17–28. [Google Scholar] [CrossRef]
- Erez, O.; Romero, R.; Kim, S.-S.; Kim, J.-S.; Kim, Y.M.; Wildman, D.E.; Than, N.G.; Mazaki-Tovi, S.; Gotsch, F.; Pineles, B.; et al. Over-expression of the thrombin receptor (PAR-1) in the placenta in preeclampsia: A mechanism for the intersection of coagulation and inflammation. J. Matern. Neonatal Med. 2008, 21, 345–355. [Google Scholar] [CrossRef] [Green Version]
- Erez, O.; Romero, R.; Vaisbuch, E.; Than, N.G.; Kusanovic, J.P.; Mazaki-Tovi, S.; Gotsch, F.; Mittal, P.; Dong, Z.; Chaiworapongsa, T.; et al. Tissue factor activity in women with preeclampsia or SGA: A potential explanation for the excessive thrombin generation in these syndromes. J. Matern. Fetal Neonatal Med. 2018, 31, 1568–1577. [Google Scholar] [CrossRef]
- Lewis, J.F.; Kuo, L.C.; Nelson, J.G.; Limacher, M.C.; Quinones, M.A. Pulsed Doppler echocardiographic determination of stroke volume and cardiac output: Clinical validation of two new methods using the apical window. Circulation 1984, 70, 425–431. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, I.M.; Hale, S.A.; Badger, G.J.; McBride, C.A. Differences in cardiovascular function comparing prior preeclamptics with nulliparous controls. Pregnancy Hypertens. 2016, 6, 320–326. [Google Scholar] [CrossRef] [Green Version]
- Boesen, M.E.; Singh, D.; Menon, B.K.; Frayne, R. A systematic literature review of the effect of carotid atherosclerosis on local vessel stiffness and elasticity. Atherosclerosis 2015, 243, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Hemker, H.; Giesen, P.; Aldieri, R.; Regnault, V.; De Smed, E.; Wagenvoord, R.; Lecompte, T.; Béguin, S. The calibrated automated thrombogram (CAT): A universal routine test for hyper- and hypocoagulability. Pathophysiol. Haemost. Thromb. 2002, 32, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.J.; Polizzano, C.; Pathology, A. Atlas of Placental Pathology: Series 5 Fascicle 6; American Registry of Pathology: Arlington, VA, USA, 2021. [Google Scholar]
- Pinar, H.; Sung, C.J.; Oyer, C.E.; Singer, D.B. Reference values for singleton and twin placental weights. Pediatr. Pathol. Lab. Med. 1996, 16, 901–907. [Google Scholar] [CrossRef] [PubMed]
- Naeye, R.L. Do placental weights have clinical significance? Hum. Pathol. 1987, 18, 387–391. [Google Scholar] [CrossRef]
- Ridder, A.; Giorgione, V.; Khalil, A.; Thilaganathan, B. Preeclampsia: The Relationship between Uterine Artery Blood Flow and Trophoblast Function. Int. J. Mol. Sci. 2019, 20, 3263. [Google Scholar] [CrossRef] [Green Version]
- Fillion, A.; Guerby, P.; Menzies, D.; Lachance, C.; Comeau, M.-P.; Bussières, M.-C.; Doucet-Gingras, F.-A.; Zérounian, S.; Bujold, E. Pathological investigation of placentas in preeclampsia (the PEARL study). Hypertens. Pregnancy 2021, 40, 56–62. [Google Scholar] [CrossRef]
- Stanek, J. Placental pathology varies in hypertensive conditions of pregnancy. Virchows Arch. 2018, 472, 415–423. [Google Scholar] [CrossRef]
- Stark, M.W.; Clark, L.; Craver, R.D. Histologic differences in placentas of preeclamptic/eclamptic gestations by birthweight, placental weight, and time of onset. Pediatr. Dev. Pathol. 2014, 17, 181–189. [Google Scholar] [CrossRef]
- Miremberg, H.; Herman, H.G.; Bustan, M.; Weiner, E.; Schreiber, L.; Bar, J.; Kovo, M. Placental vascular lesions differ between male and female fetuses in early-onset preeclampsia. Arch. Gynecol. Obstet. 2021. Epub ahead of print. [Google Scholar] [CrossRef]
- Kelly, R.; Holzman, C.; Senagore, P.; Wang, J.; Tian, Y.; Rahbar, M.H.; Chung, H. Placental Vascular Pathology Findings and Pathways to Preterm Delivery. Am. J. Epidemiol. 2009, 170, 148–158. [Google Scholar] [CrossRef]
- Catov, J.M.; Muldoon, M.F.; Gandley, R.E.; Brands, J.; Hauspurg, A.; Hubel, C.A.; Tuft, M.; Schmella, M.; Tang, G.; Parks, W.T. Maternal Vascular Lesions in the Placenta Predict Vascular Impairments a Decade After Delivery. Hypertension 2022, 79, 424–434. [Google Scholar] [CrossRef] [PubMed]
- Christians, J.K.; Munoz, M.F.H. Pregnancy complications recur independently of maternal vascular malperfusion lesions. PLoS ONE 2020, 15, e0228664. [Google Scholar] [CrossRef] [PubMed]
- Franchini, M. Haemostasis and pregnancy. Thromb. Haemost. 2006, 95, 401–413. [Google Scholar] [CrossRef] [PubMed]
- Brummel-Ziedins, K.E.; Pouliot, R.L.; Mann, K.G. Thrombin generation: Phenotypic quantitation. J. Thromb. Haemost. 2004, 2, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Dahm, A.; Skretting, G.; Mowinckel, M.-C.; Stranda, A.; Østerud, B.; Sandset, P.M.; Kostovski, E.; Iversen, P.O. Reduced peak, but no diurnal variation, in thrombin generation upon melatonin supplementation in tetraplegia. A randomised, placebo-controlled study. Thromb. Haemost. 2015, 114, 964–968. [Google Scholar] [CrossRef]
- Spyropoulos, A.C. Insights from the 7th Southwest Symposium on Thrombosis and Hemostasis. Thromb. Res. 2008, 123 (Suppl. S1), S1. [Google Scholar] [CrossRef] [PubMed]
- Hale, S.A.; Sobel, B.; Benvenuto, A.; Schonberg, A.; Badger, G.J.; Bernstein, I.M. Coagulation and Fibrinolytic System Protein Profiles in Women with Normal Pregnancies and Pregnancies Complicated by Hypertension. Pregnancy Hypertens. 2012, 2, 152–157. [Google Scholar] [CrossRef] [Green Version]
- McLean, K.C.; Bernstein, I.M.; Brummel-Ziedins, K.E. Tissue factor-dependent thrombin generation across pregnancy. Am. J. Obstet Gynecol. 2012, 207, 135-e1–135-e6. [Google Scholar] [CrossRef] [Green Version]
Characteristic | Descriptor (n = 63) |
---|---|
Baseline Characteristics | |
Age, years | 31 ± 4 |
BMI, kg/m2 | 24 ± 5 |
Race, % Caucasian | (54) 86% |
Positive History of Preeclampsia | (12) 20% |
Delivery Outcomes | |
Gestational Age, days | 276 ± 12 |
Infant Sex, male | (37) 59% |
Birth Weight, grams | 3354 ± 6570 |
Birth Weight Percentile | 49 ± 27% |
Developed Preeclampsia | (9) 14% |
Placental Characteristics | |
Placental Mass, grams | 472 ± 98 |
Placental Mass Percentile | 36 ± 31% |
Birthweight/Placental Weight Ratio | 7.2 ± 1.1 |
Any MVM lesion | (53) 70% |
Decidual Arteriopathy | (25) 40% |
Infarcts and Agglutination | (28) 44% |
Accelerated Villous Maturation | (20) 32% |
Distal Villous Hypoplasia | (11) 17% |
Placental Hypoplasia | (18) 29% |
Number of MVM lesions | |
None | (10) 16% |
One | (15) 24% |
Two | (22) 35% |
Three | (13) 21% |
Four | (3) 4% |
Physiologic Characteristics of Participants | Prepregnancy (n = 63) | First Trimester (n = 54) | Third Trimester (n = 57) |
---|---|---|---|
Cycle Day or Gestational Age, days | 9 ± 4 | 90 ± 6 | 216 ± 5 |
Lean Body Mass (LBM), % | 40 ± 5 | - | - |
Fat Body Mass, % | 24 ± 11 | - | - |
Insulin Resistance, HOMA-IR | 1.09 ± 0.82 | - | - |
Plasma Volume/LBM, mL/kg | 64.0 ± 8.0 | 72.7 ± 10.2 | 97.8 ± 13.8 |
Plasma Volume Increase from Prepregnancy, % | - | 14 ± 16 | 54 ± 22 |
Systolic Blood Pressure, mmHg | 118 ± 10 | 114 ± 11 | 114 ± 10 |
Diastolic Blood Pressure, mmHg | 68 ± 6 | 65 ± 8 | 63 ± 9 |
Mean Arterial Pressure, mmHg | 88 ± 7 | 83 ± 9 | 81 ± 8 |
Pulse, bpm | 63 ± 9 | 67 ± 10 | 78 ± 10 |
Brachial Pulse Wave Velocity, m/sec | 7.88 ± 1.52 | 7.82 ± 1.79 | 7.20 ± 1.43 |
Popliteal Pulse Wave Velocity, m/sec | 3.78 ± 0.45 | 3.83 ± 0.43 | 3.65 ± 0.48 |
Beta Stiffness Index | 18.3 ± 19.3 | 19.6 ± 18.3 | - |
Distensibility, 10−3* mmHg−1 | 0.0010 ± 0.0007 | 0.00098 ± 0.00072 | - |
Response to Volume Loading, mmHg | 104 ± 111 | - | - |
Cardiac Output (C), L/min | 4.6 ± 1.1 | 5.1 ± 1.0 | 6.0 ± 1.1 |
Uterine Blood Flow, mL/min | 39.6 ± 20.2 | 363.9 ± 204.9 | - |
Uterine Pulsatility Index | 3.18 ± 1.24 | 1.51 ± 0.41 | - |
Uterine Resistance Index | 0.91 ± 0.07 | 0.70 ± 0.08 | - |
Uterine Index (UBF/CO), % | 0.89 ± 0.51 | 7.66 ± 5.22 | - |
Visit | Placental MVM | MVM? | TF-Initiated Thrombin Generation Peak, nM | TF-Initiated Thrombin Generation ETP, nM × min | TF + TM Thrombin Generation Peak, nM | TF + TM Thrombin Generation ETP, nM × min |
---|---|---|---|---|---|---|
Prepregnancy | Decidual Arteriopathy | Yes, n = 17 | 259 ± 43 262 ± 41 | 1606 ± 399 1540 ± 250 | 122 ± 47 141 ± 46 | 593 ± 250 683 ± 246 |
No, n = 16 | ||||||
Infarcts and Agglutination | Yes, n = 16 | 263 ± 36 259 ± 46 | 1559 ± 226 1585 ± 407 | 138 ± 37 126 ± 54 | 668 ± 189 613 ± 297 | |
No, n = 17 | ||||||
Accelerated Villous Maturation | Yes, n = 7 No, n = 26 | 276 ± 42 260 ± 40 | 1626 ± 170 1557 ± 359 | 143 ± 39 129 ± 49 | 719 ± 252 618 ± 247 | |
Distal Villous Hypoplasia | Yes, n = 6 No, n = 27 | 284 ± 54 256 ± 37 | 1773 ± 572 1527 ± 239 | 142 ± 43 129 ± 48 | 719 ± 291 622 ± 240 | |
Early Pregnancy | Decidual Arteriopathy | No, n = 17 | 383 ± 50 369 ± 55 | 2299 ± 355 2220 ± 322 | 273 ± 64 258 ± 90 | 1453 ± 338 1349 ± 477 |
No, n = 16 | ||||||
Infarcts and Agglutination | Yes, n = 16 | 390 ± 57 361 ± 44 | 2297 ± 349 2218 ± 326 | 291 ± 64 * 237 ± 83 | 1541 ± 326 * 1250 ± 451 | |
No, n = 17 | ||||||
Accelerated Villous Maturation | Yes, n = 7 No, n = 26 | 409 ± 77 367 ± 41 | 2368 ± 343 229 ± 334 | 327 ± 60 * 248 ± 74 | 1712 ± 251 * 1316 ± 410 | |
Distal Villous Hypoplasia | Yes, n = 6 No, n = 27 | 377 ± 54 376 ± 53 | 2263 ± 361 2258 ± 337 | 269 ± 67 264 ± 80 | 1401 ± 339 1400 ± 430 | |
Late Pregnancy | Decidual Arteriopathy | Yes, n = 17 | 384 ± 345 349 ± 41 | 2206 ± 324 2134 ± 215 | 308 ± 94 * 247 ± 70 | 1503 ± 491 1262 ± 348 |
No, n = 16 | ||||||
Infarcts and Agglutination | Yes, n = 16 | 370 ± 48 361 ± 73 | 2215 ± 269 2125 ± 275 | 286 ± 65 268 ± 105 | 1468 ± 355 1296 ± 493 | |
No, n = 17 | ||||||
Accelerated Villous Maturation | Yes, n = 7 No, n = 26 | 377 ± 62 362 ± 32 | 2227 ± 177 2153 ± 293 | 311 ± 65 268 ± 91 | 1525 ± 195 1340 ± 474 | |
Distal Villous Hypoplasia | Yes, n = 6 No, n = 27 | 371 ± 74 364 ± 60 | 2147 ± 229 2173 ± 284 | 276 ± 122 277 ± 81 | 1290 ± 527 1399 ± 420 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McBride, C.A.; Bernstein, I.M.; Sybenga, A.B.; McLean, K.C.; Orfeo, T.; Bravo, M.C. Placental Maternal Vascular Malperfusion Is Associated with Prepregnancy and Early Pregnancy Maternal Cardiovascular and Thrombotic Profiles. Reprod. Med. 2022, 3, 50-61. https://doi.org/10.3390/reprodmed3010006
McBride CA, Bernstein IM, Sybenga AB, McLean KC, Orfeo T, Bravo MC. Placental Maternal Vascular Malperfusion Is Associated with Prepregnancy and Early Pregnancy Maternal Cardiovascular and Thrombotic Profiles. Reproductive Medicine. 2022; 3(1):50-61. https://doi.org/10.3390/reprodmed3010006
Chicago/Turabian StyleMcBride, Carole A., Ira M. Bernstein, Amelia B. Sybenga, Kelley C. McLean, Thomas Orfeo, and Maria Cristina Bravo. 2022. "Placental Maternal Vascular Malperfusion Is Associated with Prepregnancy and Early Pregnancy Maternal Cardiovascular and Thrombotic Profiles" Reproductive Medicine 3, no. 1: 50-61. https://doi.org/10.3390/reprodmed3010006
APA StyleMcBride, C. A., Bernstein, I. M., Sybenga, A. B., McLean, K. C., Orfeo, T., & Bravo, M. C. (2022). Placental Maternal Vascular Malperfusion Is Associated with Prepregnancy and Early Pregnancy Maternal Cardiovascular and Thrombotic Profiles. Reproductive Medicine, 3(1), 50-61. https://doi.org/10.3390/reprodmed3010006