A Half-Century of Heterotopic Heart Transplantation in Mice: The Spearhead of Immunology Research
Abstract
:1. The Historic Implementation of Animal Models for Transplantation Research
2. Surgical Procedures of Mouse Heart Transplantation
2.1. The Cervical Heterotopic Heart Transplantation Technique
2.2. The Cuff Cervical Heart Transplantation Technique
2.3. The Heterotopic Abdominal Heart Transplantation Technique
2.4. The Modified Heterotopic Abdominal Heart Transplantation Technique
3. Application Fields of Mouse Heart Transplantation
3.1. Alloimmune Response and Immune Tolerance Mechanisms
3.2. Gene Therapy and the Impact of Genes and Gene Mutations on Long-Term Survival
3.3. Immune Activating/Suppressing Drug Research
3.4. Ischemia–Reperfusion(I/R) Injury and Cardiovascular Disease Research
3.5. Other Fields
4. Current Problems and Prospects for the Future
Author Contributions
Funding
Conflicts of Interest
References
- Harrison, J.H.; Merrill, J.P.; Murray, J.E. Renal homotransplantation in identical twins. Surg. Forum 1956, 6, 432–436. [Google Scholar]
- Murray, J.E.; Merrill, J.P.; Harrison, J.H. Kidney transplantation between seven pairs of identical twins. Ann. Surg. 1958, 148, 343–359. [Google Scholar] [CrossRef]
- Starzl, T.E.; Marchioro, T.L.; Porter, K.A.; Brettschneider, L. Homotransplantation of the liver. Transplantation 1967, 5, 790–803. [Google Scholar] [CrossRef] [PubMed]
- Carrel, A. The surgery of blood vessels etc. Bull. Johns Hopkins. Hosp. 1907, 18, 18–28. [Google Scholar]
- Plenter, R.J.; Zamora, M.R.; Grazia, T.J. Four decades of vascularized heterotopic cardiac transplantation in the mouse. J. Investig. Surg. 2013, 26, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Billingham, R.E.; Krohn, P.L.; Medawar, P.B. Effect of cortisone on survival of skin homografts in rabbits. Br. Med. J. 1951, 1, 1157–1163. [Google Scholar] [CrossRef] [PubMed]
- Lee, S. An improved technique of renal transplantation in the rat. Surgery 1967, 61, 771–773. [Google Scholar] [PubMed]
- Lee, S.H.; Fisher, B. Portacaval shunt in the rat. Surgery 1961, 50, 668–672. [Google Scholar] [PubMed]
- Abbott, C.P.; Lindsey, E.S.; Creech, O., Jr.; Dewitt, C.W. A Technique for Heart Transplantation in the Rat. Arch. Surg. 1964, 89, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Ono, K.; Lindsey, E.S. Improved technique of heart transplantation in rats. J. Thorac. Cardiovasc. Surg. 1969, 57, 225–229. [Google Scholar] [CrossRef]
- Corry, R.J.; Russell, P.S. New Possibilities for Organ Allografting in the Mouse. In Immunological Aspects of Transplantation Surgery; Calne, R.Y., Ed.; Springer: Dordrecht, The Netherlands, 1973; pp. 279–295. [Google Scholar]
- Skoskiewicz, M.; Chase, C.; Winn, H.J.; Russell, P.S. Kidney transplants between mice of graded immunogenetic diversity. Transplant. Proc. 1973, 5, 721–725. [Google Scholar] [PubMed]
- Pabst, R. The pig as a model for immunology research. Cell Tissue Res. 2020, 380, 287–304. [Google Scholar] [CrossRef] [PubMed]
- Pressler, B.M. Transplantation in small animals. Vet. Clin. N. Am. Small Anim. Pract. 2010, 40, 495–505. [Google Scholar] [CrossRef]
- Dehoux, J.P.; Gianello, P. The importance of large animal models in transplantation. Front. Biosci. 2007, 12, 4864–4880. [Google Scholar] [CrossRef] [PubMed]
- Graves, S.S.; Mathes, D.W.; Storb, R. Induction of Tolerance Towards Solid Organ Allografts Using Hematopoietic Cell Transplantation in Large Animal Models. OBM Transplant. 2019, 3, 24. [Google Scholar] [CrossRef] [PubMed]
- Mannon, R.B.; Griffiths, R.; Ruiz, P.; Platt, J.L.; Coffman, T.M. Absence of donor MHC antigen expression ameliorates chronic kidney allograft rejection. Kidney Int. 2002, 62, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Qian, S.G.; Fung, J.J.; Demetris, A.V.; Ildstad, S.T.; Starzl, T.E. Orthotopic liver transplantation in the mouse. Transplantation 1991, 52, 562–564. [Google Scholar] [CrossRef] [PubMed]
- Squiers, E.C.; Kelley, S.E.; West, J.C. Small bowel transplantation in the mouse: Development of a model. Microsurgery 1992, 13, 345–347. [Google Scholar] [CrossRef]
- Purcell, L.J.; Mottram, P.L.; Green, M.K.; Mandel, T.E. Transplantation of the segmental pancreas in STZ-treated diabetic mice. Transplant. Proc. 1992, 24, 236–237. [Google Scholar] [PubMed]
- Jiang, J.; Humar, A.; Gracia, B.; Zhong, R. Surgical technique for vascularized ear transplantation in mice. Microsurgery 1998, 18, 42–46. [Google Scholar] [CrossRef]
- Chereshnev, I.; Trogan, E.; Omerhodzic, S.; Itskovich, V.; Aguinaldo, J.G.; Fayad, Z.A.; Fisher, E.A.; Reis, E.D. Mouse model of heterotopic aortic arch transplantation. J. Surg. Res. 2003, 111, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, H.; Hu, Y.; Zou, Y.; Dirnhofer, S.; Kleindienst, R.; Wick, G.; Xu, Q. Mouse model of transplant arteriosclerosis: Role of intercellular adhesion molecule-1. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.P.; Schulte, F.; Bulfone-Paus, S.; Hoffmann, F. The effect of corticosteroid and cyclosporin A on murine corneal allograft rejection. Graefe’s Arch. Clin. Exp. Ophthalmol. 2000, 238, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Boardman, D.A.; Philippeos, C.; Fruhwirth, G.O.; Ibrahim, M.A.; Hannen, R.F.; Cooper, D.; Marelli-Berg, F.M.; Watt, F.M.; Lechler, R.I.; Maher, J.; et al. Expression of a Chimeric Antigen Receptor Specific for Donor HLA Class I Enhances the Potency of Human Regulatory T Cells in Preventing Human Skin Transplant Rejection. Am. J. Transplant. 2017, 17, 931–943. [Google Scholar] [CrossRef] [PubMed]
- Nagano, H.; Libby, P.; Taylor, M.K.; Hasegawa, S.; Stinn, J.L.; Becker, G.; Tilney, N.L.; Mitchell, R.N. Coronary arteriosclerosis after T-cell-mediated injury in transplanted mouse hearts: Role of interferon-gamma. Am. J. Pathol. 1998, 152, 1187–1197. [Google Scholar] [PubMed]
- Tao, R.; Wang, L.; Han, R.; Wang, T.; Ye, Q.; Honjo, T.; Murphy, T.L.; Murphy, K.M.; Hancock, W.W. Differential effects of B and T lymphocyte attenuator and programmed death-1 on acceptance of partially versus fully MHC-mismatched cardiac allografts. J. Immunol. 2005, 175, 5774–5782. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Zhang, J.; Fu, J.; Wu, S.; Philipp, T.; Uwe, H.; Kribben, A.; Witzke, O. Novel technique for blood circuit reconstruction in mouse heart transplantation model. Microsurgery 2006, 26, 594–598. [Google Scholar] [CrossRef]
- Westhofen, S.; Jelinek, M.; Dreher, L.; Biermann, D.; Martin, J.; Vitzhum, H.; Reichenspurner, H.; Ehmke, H.; Schwoerer, A.P. The heterotopic heart transplantation in mice as a small animal model to study mechanical unloading—Establishment of the procedure, perioperative management and postoperative scoring. PLoS ONE 2019, 14, e0214513. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.H. A technique of cervical heterotopic heart transplantation in mice. Transplantation 1991, 52, 1099–1101. [Google Scholar] [CrossRef]
- Li, W.; Shepherd, H.M.; Krupnick, A.S.; Gelman, A.E.; Lavine, K.J.; Kreisel, D. Mouse Heterotopic Cervical Cardiac Transplantation Utilizing Vascular Cuffs. J. Vis. Exp. 2022, 184, e64089. [Google Scholar] [CrossRef]
- Matsuura, A.; Abe, T.; Yasuura, K. Simplified mouse cervical heart transplantation using a cuff technique. Transplantation 1991, 51, 896–898. [Google Scholar] [CrossRef] [PubMed]
- Schramm, R.; Schäfers, H.J.; Hamacher, J.; Menger, M.D. Simplified technique for heterotopic vascularized heart transplantation in mice. Microsurgery 2006, 26, 212–213. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, Y.; Li, X.K. Simplified technique for heterotopic vascularized cervical heart transplantation in mice. Microsurgery 2005, 25, 76–79. [Google Scholar] [CrossRef]
- Li, C.; Luo, L.; Lu, J.; Feng, L.; Shan, J.; Long, D.; Guo, Y.; Wu, W.; Li, S.; Li, Y. A modified splint tubing technique for heterotopic heart transplantation in mouse. Transpl. Immunol. 2011, 25, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Lan, D.; Shang, Y.; Su, H.; Liang, M.; Liu, Y.; Li, H.; Feng, Q.; Cao, X.; Dong, H. Facile Fabrication of Hollow Hydrogel Microfiber via 3D Printing-Assisted Microfluidics and Its Application as a Biomimetic Blood Capillary. ACS Biomater. Sci. Eng. 2021, 7, 4971–4981. [Google Scholar] [CrossRef]
- Song, H.G.; Rumma, R.T.; Ozaki, C.K.; Edelman, E.R.; Chen, C.S. Vascular Tissue Engineering: Progress, Challenges, and Clinical Promise. Cell Stem Cell 2018, 22, 340–354. [Google Scholar] [CrossRef]
- Laschinger, M.; Assfalg, V.; Matevossian, E.; Friess, H.; Hser, N. Potential of Heterotopic Cardiac Transplantation in Mice as a Model for Elucidating Mechanisms of Graft Rejection. In Cardiac Transplantation; InTech Open: Rijeka, Croatia, 2012; Available online: https://www.intechopen.com/chapters/28052 (accessed on 10 February 2024).
- Wang, C.; Wang, Z.; Allen, R.; Bishop, G.A.; Sharland, A.F. A modified method for heterotopic mouse heart transplantion. J. Vis. Exp. 2014, 88, 51423. [Google Scholar] [CrossRef]
- Ren, H.; Zhang, J.; Wang, H.; Zhou, S. Everted Suturing of the Inferior Vena Cava Is Addressed in the Abdominal Mouse Heart Transplant Model. Exp. Clin. Transplant. 2018, 16, 588–591. [Google Scholar] [CrossRef]
- Niimi, M. The technique for heterotopic cardiac transplantation in mice: Experience of 3000 operations by one surgeon. J. Heart Lung Transplant. 2001, 20, 1123–1128. [Google Scholar] [CrossRef]
- Rong, S.; Lewis, A.G.; Kunter, U.; Haller, H.; Gueler, F. A knotless technique for kidney transplantation in the mouse. J. Transplant. 2012, 2012, 127215. [Google Scholar] [CrossRef] [PubMed]
- Dun, H.; Ye, L.; Zhu, Y.; Wong, B.W. Combined abdominal heterotopic heart and aorta transplant model in mice. PLoS ONE 2020, 15, e0230649. [Google Scholar] [CrossRef]
- Su, S.; Türk, T.R.; Wu, S.; Fan, H.; Fu, J.; Wu, K.; Flögel, U.; Ding, Z.; Kribben, A.; Witzke, O. Modified suture technique in a mouse heart transplant model. Asian J. Surg. 2011, 34, 86–91. [Google Scholar] [CrossRef]
- Yin, D.; Fu, J.; Allabauer, I.; Witzke, O.; Rong, S.; Hoerning, A. Blood Circuit Reconstruction in an Abdominal Mouse Heart Transplantation Model. J. Vis. Exp. 2021, 172, e62007. [Google Scholar] [CrossRef]
- Smit, F.E.; Dohmen, P.M. Cardiovascular tissue engineering: Where we come from and where are we now? Med. Sci. Monit. Basic Res. 2015, 21, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Joanne, P.; Kitsara, M.; Boitard, S.E.; Naemetalla, H.; Vanneaux, V.; Pernot, M.; Larghero, J.; Forest, P.; Chen, Y.; Menasché, P.; et al. Nanofibrous clinical-grade collagen scaffolds seeded with human cardiomyocytes induces cardiac remodeling in dilated cardiomyopathy. Biomaterials 2016, 80, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.; Park, H.J.; Kim, S.W.; Kim, H.; Park, J.Y.; Na, S.J.; Kim, H.J.; Park, M.N.; Choi, S.H.; Park, S.H.; et al. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials 2017, 112, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Muller, A.M.; Fischer, A.; Katus, H.A.; Kaya, Z. Mouse models of autoimmune diseases—Autoimmune myocarditis. Curr. Pharm. Des. 2015, 21, 2498–2512. [Google Scholar] [CrossRef]
- Hasgur, S.; Fan, R.; Zwick, D.B.; Fairchild, R.L.; Valujskikh, A. B cell-derived IL-1β and IL-6 drive T cell reconstitution following lymphoablation. Am. J. Transplant. 2020, 20, 2740–2754. [Google Scholar] [CrossRef]
- Sharma, M.; Liu, W.; Perincheri, S.; Gunasekaran, M.; Mohanakumar, T. Exosomes expressing the self-antigens myosin and vimentin play an important role in syngeneic cardiac transplant rejection induced by antibodies to cardiac myosin. Am. J. Transplant. 2018, 18, 1626–1635. [Google Scholar] [CrossRef] [PubMed]
- Young, J.S.; Daniels, M.D.; Miller, M.L.; Wang, T.; Zhong, R.; Yin, D.; Alegre, M.L.; Chong, A.S. Erosion of Transplantation Tolerance After Infection. Am. J. Transplant. 2017, 17, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Fryer, J.P.; Leventhal, J.R.; Pao, W.; Stadler, C.; Jones, M.; Walsh, T.; Zhong, R.; Zhang, Z.; Wang, H.; Goodman, D.J.; et al. Synthetic peptides which inhibit the interaction between C1q and immunoglobulin and prolong xenograft survival. Transplantation 2000, 70, 828–836. [Google Scholar] [CrossRef]
- Dujovny, N.; Varghese, A.; Shen, J.; Yin, D.; Ji, S.; Ma, L.; Finnegan, A.; Chong, A.S. Acute xenograft rejection mediated by antibodies produced independently of TH1/TH2 cytokine profiles. Am. J. Transplant. 2002, 2, 526–534. [Google Scholar] [CrossRef]
- Hosiawa, K.A.; Wang, H.; DeVries, M.E.; Garcia, B.; Jiang, J.; Zhou, D.; Cameron, M.J.; Zhong, R.; Kelvin, D.J. Regulation of B- and T-cell mediated xenogeneic transplant rejection by interleukin 12. Transplantation 2006, 81, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Weber, M.; Lechler, R.; Dorling, A. NK-cell-dependent acute xenograft rejection in the mouse heart-to-rat model. Xenotransplantation 2006, 13, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Yannoutsos, N.; Ijzermans, J.N.; Harkes, C.; Bonthuis, F.; Zhou, C.Y.; White, D.; Marquet, R.L.; Grosveld, F. A membrane cofactor protein transgenic mouse model for the study of discordant xenograft rejection. Genes Cells 1996, 1, 409–419. [Google Scholar] [CrossRef]
- Roussoulières, A.L.; Raisky, O.; Chalabreysse, L.; Dureau, G.; Cerutti, C.; Thieblemont, C.; Boissonnat, P.; Sebbag, L.; Obadia, J.F.; Ninet, J.; et al. Identification and characterization of two genes (MIP-1beta, VE-CADHERIN) implicated in acute rejection in human heart transplantation: Use of murine models in tandem with cDNA arrays. Circulation 2005, 111, 2636–2644. [Google Scholar] [CrossRef] [PubMed]
- Fry, J.W.; Morris, P.J.; Wood, K.J. Adenoviral transfer of a single donor-specific MHC class I gene to recipient bone marrow cells can induce specific immunological unresponsiveness in vivo. Gene Ther. 2002, 9, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Wang, K.; Zhou, C.; Gan, Z.; Ma, D.; Ye, P.; Sun, Y.; Wu, J.; Huang, X.; Ren, L.; et al. Knockout of microRNA-155 ameliorates the Th1/Th17 immune response and tissue injury in chronic rejection. J. Heart Lung Transplant. 2017, 36, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zheng, Y.; Sun, Y.; Li, S.; Chen, L.; Jin, X.; Hou, X.; Liu, X.; Chen, Q.; Li, J.; et al. Knockdown of NEAT1 induces tolerogenic phenotype in dendritic cells by inhibiting activation of NLRP3 inflammasome. Theranostics 2019, 9, 3425–3442. [Google Scholar] [CrossRef]
- Min, W.P.; Gorczynski, R.; Huang, X.Y.; Kushida, M.; Kim, P.; Obataki, M.; Lei, J.; Suri, R.M.; Cattral, M.S. Dendritic cells genetically engineered to express Fas ligand induce donor-specific hyporesponsiveness and prolong allograft survival. J. Immunol. 2000, 164, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Schnickel, G.T.; Hsieh, G.R.; Kachikwu, E.L.; Garcia, C.; Shefizadeh, A.; Fishbein, M.C.; Ardehali, A. Cytoprotective gene HO-1 and chronic rejection in heart transplantation. Transplant. Proc. 2006, 38, 3259–3262. [Google Scholar] [CrossRef] [PubMed]
- Buszko, M.; Cardini, B.; Oberhuber, R.; Oberhuber, L.; Jakic, B.; Beierfuss, A.; Wick, G.; Cappellano, G. Differential depletion of total T cells and regulatory T cells and prolonged allotransplant survival in CD3Ɛ humanized mice treated with polyclonal anti human thymocyte globulin. PLoS ONE 2017, 12, e0173088. [Google Scholar] [CrossRef] [PubMed]
- Yin, D.; Ma, L.; Shen, J.; Byrne, G.W.; Logan, J.S.; Chong, A.S. CTLA-41g in combination with anti-CD40L prolongs xenograft survival and inhibits anti-gal ab production in GT-Ko mice. Am. J. Transplant. 2002, 2, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, I.; Geer, M.J.; Vögtle, T.; Crispin, A.; Campagna, D.R.; Barr, A.; Calicchio, M.L.; Heising, S.; van Geffen, J.P.; Kuijpers, M.J.E.; et al. Congenital macrothrombocytopenia with focal myelofibrosis due to mutations in human G6b-B is rescued in humanized mice. Blood 2018, 132, 1399–1412. [Google Scholar] [CrossRef]
- Matsuura, R.; Maeda, A.; Sakai, R.; Eguchi, H.; Lo, P.C.; Hasuwa, H.; Ikawa, M.; Nakahata, K.; Zenitani, M.; Yamamichi, T.; et al. Human HLA-Ev (147) Expression in Transgenic Animals. Transplant. Proc. 2016, 48, 1323–1325. [Google Scholar] [CrossRef]
- Xie, C.; Zhang, Y.P.; Song, L.; Luo, J.; Qi, W.; Hu, J.; Lu, D.; Yang, Z.; Zhang, J.; Xiao, J.; et al. Genome editing with CRISPR/Cas9 in postnatal mice corrects PRKAG2 cardiac syndrome. Cell Res. 2016, 26, 1099–1111. [Google Scholar] [CrossRef]
- Chhabra, M.; Alsughayyir, J.; Qureshi, M.S.; Mallik, M.; Ali, J.M.; Gamper, I.; Moseley, E.L.; Peacock, S.; Kosmoliaptsis, V.; Goddard, M.J.; et al. Germinal Center Alloantibody Responses Mediate Progression of Chronic Allograft Injury. Front. Immunol. 2018, 9, 3038. [Google Scholar] [CrossRef]
- Wedel, J.; Stack, M.P.; Seto, T.; Sheehan, M.M.; Flynn, E.A.; Stillman, I.E.; Kong, S.W.; Liu, K.; Briscoe, D.M. T Cell-Specific Adaptor Protein Regulates Mitochondrial Function and CD4(+) T Regulatory Cell Activity In Vivo following Transplantation. J. Immunol. 2019, 203, 2328–2338. [Google Scholar] [CrossRef] [PubMed]
- Gock, H.; Salvaris, E.; Murray-Segal, L.; Mottram, P.; Han, W.; Pearse, M.J.; Goodman, D.J.; Cowan, P.J.; d’Apice, A.J. Hyperacute rejection of vascularized heart transplants in BALB/c Gal knockout mice. Xenotransplantation 2000, 7, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Salvaris, E.; Gock, H.; Han, W.; Murray-Segal, L.; Barlow, H.; Mottram, P.; Pearse, M.; Cowan, P.; Goodman, D.; d’Apice, A.J. Naturally acquired anti-alpha Gal antibodies in a murine allograft model similar to delayed xenograft rejection. Xenotransplantation 2000, 7, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Tector, A.J.; Mosser, M.; Tector, M.; Bach, J.M. The Possible Role of Anti-Neu5Gc as an Obstacle in Xenotransplantation. Front. Immunol. 2020, 11, 622. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, I.F.; Li, Y.Q.; Patton, K.; Sandrin, M.S. Fucosyl transferase (H) transgenic heart transplants to Gal−/− mice. Transplantation 2000, 70, 1205–1209. [Google Scholar] [CrossRef] [PubMed]
- Chiang, T.R.; Fanget, L.; Gregory, R.; Tang, Y.; Ardiet, D.L.; Gao, L.; Meschter, C.; Kozikowski, A.P.; Buelow, R.; Vuist, W.M. Anti-Gal antibodies in humans and 1, 3alpha-galactosyltransferase knock-out mice. Transplantation 2000, 69, 2593–2600. [Google Scholar] [CrossRef]
- Imai, M.; Takigami, K.; Guckelberger, O.; Kaczmarek, E.; Csizmadia, E.; Bach, F.H.; Robson, S.C. Recombinant adenoviral mediated CD39 gene transfer prolongs cardiac xenograft survival. Transplantation 2000, 70, 864–870. [Google Scholar] [CrossRef]
- McGregor, C.G.A.; Byrne, G.W. Porcine to Human Heart Transplantation: Is Clinical Application Now Appropriate? J. Immunol. Res. 2017, 2017, 2534653. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Schröppel, B.; Lal, G.; Jakubzick, C.; Mao, X.; Chen, D.; Yin, N.; Jessberger, R.; Ochando, J.C.; Ding, Y.; et al. Regulatory T cells sequentially migrate from inflamed tissues to draining lymph nodes to suppress the alloimmune response. Immunity 2009, 30, 458–469. [Google Scholar] [CrossRef] [PubMed]
- Ochando, J.C.; Yopp, A.C.; Yang, Y.; Garin, A.; Li, Y.; Boros, P.; Llodra, J.; Ding, Y.; Lira, S.A.; Krieger, N.R.; et al. Lymph node occupancy is required for the peripheral development of alloantigen-specific Foxp3+ regulatory T cells. J. Immunol. 2005, 174, 6993–7005. [Google Scholar] [CrossRef]
- Hu, Y.; Zou, Y.; Hala, M.; Dietrich, H.; Wick, G.; Xu, Q. Prolonged survival of heart allografts from p53-deficient mice. Transplantation 2000, 69, 2634–2640. [Google Scholar] [CrossRef]
- Zheng, X.X.; Gao, W.; Donskoy, E.; Neuberg, M.; Ruediger, M.; Strom, T.B.; Moll, T. An antagonist mutant IL-15/Fc promotes transplant tolerance. Transplantation 2006, 81, 109–116. [Google Scholar] [CrossRef]
- Dai, H.; Peng, F.; Lin, M.; Xia, J.; Yu, S.; Lan, G.; Wang, Y.; Xie, X.; Fang, C.; Corbascio, M.; et al. Anti-OX40L monoclonal antibody prolongs secondary heart allograft survival based on CD40/CD40L and LFA-1/ICAM-1 blockade. Transpl. Immunol. 2015, 32, 84–91. [Google Scholar] [CrossRef]
- Van Aelst, L.N.; Summer, G.; Li, S.; Gupta, S.K.; Heggermont, W.; De Vusser, K.; Carai, P.; Naesens, M.; Van Cleemput, J.; Van de Werf, F.; et al. RNA Profiling in Human and Murine Transplanted Hearts: Identification and Validation of Therapeutic Targets for Acute Cardiac and Renal Allograft Rejection. Am. J. Transplant. 2016, 16, 99–110. [Google Scholar] [CrossRef]
- Kosuge, H.; Haraguchi, G.; Koga, N.; Maejima, Y.; Suzuki, J.; Isobe, M. Pioglitazone prevents acute and chronic cardiac allograft rejection. Circulation 2006, 113, 2613–2622. [Google Scholar] [CrossRef]
- Shimizu, I.; Tomita, Y.; Iwai, T.; Kajiwara, T.; Okano, S.; Nomoto, K.; Tominaga, R. Sequential analysis of anti-alpha Gal natural antibody-producing B cells in GalT knockout mice in cyclophosphamide-induced tolerance. Scand. J. Immunol. 2006, 63, 435–443. [Google Scholar] [CrossRef]
- Yu, Z.; Zhou, X.; Yu, S.; Xie, H.; Zheng, S. IL-15 is decreased upon CsA and FK506 treatment of acute rejection following heart transplantation in mice. Mol. Med. Rep. 2015, 11, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Urbanellis, P.; Shyu, W.; Khattar, R.; Wang, J.; Zakharova, A.; He, W.; Sadozai, H.; Amir, A.Z.; Shalev, I.; Phillips, M.J.; et al. The regulatory T cell effector molecule fibrinogen-like protein 2 is necessary for the development of rapamycin-induced tolerance to fully MHC-mismatched murine cardiac allografts. Immunology 2015, 144, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Liu, B.; Chen, J.; Liu, C.; Shen, Z. Impact of Regulatory T Cells on Innate Immune Cells in a Pre-Sensitized Heart Transplant Model. Ann. Transplant. 2018, 23, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Chen, X.; Zhang, L.; Yang, Z.; Zhu, H.; Guo, D.; Su, R.; Chen, H.; Li, H.; Song, P.; et al. Targeting peripheral immune organs with self-assembling prodrug nanoparticles ameliorates allogeneic heart transplant rejection. Am. J. Transplant. 2021, 21, 3871–3882. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Tomita, Y.; Matsuzaki, G.; Yoshikawa, M.; Shimizu, I.; Nakashima, Y.; Sueishi, K.; Nomoto, K.; Yasui, H. Mixed chimerism, heart, and skin allograft tolerance in cyclophosphamide-induced tolerance. Transplantation 2000, 70, 906–916. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lazarovits, A.; Gao, Z.; Garcia, B.; Jiang, J.; Wang, J.; Xing, J.J.; White, M.; Zhong, R. Prolongation of xenograft survival using monoclonal antibody CD45RB and cyclophosphamide in rat-to-mouse kidney and heart transplant models. Transplantation 2000, 69, 1137–1146. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Hosiawa, K.A.; Min, W.; Yang, J.; Zhang, X.; Garcia, B.; Ichim, T.E.; Zhou, D.; Lian, D.; Kelvin, D.J.; et al. Cytokines regulate the pattern of rejection and susceptibility to cyclosporine therapy in different mouse recipient strains after cardiac allografting. J. Immunol. 2003, 171, 3823–3836. [Google Scholar] [CrossRef] [PubMed]
- Moffatt, S.D.; Metcalfe, S.M. Comparison between tacrolimus and cyclosporine as immunosuppressive agents compatible with tolerance induction by CD4/CD8 blockade. Transplantation 2000, 69, 1724–1726. [Google Scholar] [CrossRef] [PubMed]
- Isobe, M.; Suzuki, J.; Morishita, R.; Kaneda, Y.; Amano, J. Gene therapy for heart transplantation-associated coronary arteriosclerosis. Ann. N. Y. Acad. Sci. 2000, 902, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Xie, M.; Xu, L.; Zheng, X.; Yang, Y.; Lv, X. The protective role of interleukin-18 binding protein in a murine model of cardiac ischemia/reperfusion injury. Transpl. Int. 2015, 28, 1436–1444. [Google Scholar] [CrossRef] [PubMed]
- Tuuminen, R.; Dashkevich, A.; Keränen, M.A.; Raissadati, A.; Krebs, R.; Jokinen, J.J.; Arnaudova, R.; Rouvinen, E.; Ylä-Herttuala, S.; Nykänen, A.I.; et al. Platelet-derived Growth Factor-B Protects Rat Cardiac Allografts From Ischemia-reperfusion Injury. Transplantation 2016, 100, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhang, H.; Hao, F.; Hao, J.; Pan, L.; Zhao, Q.; Wo, J. Clusterin Reduces Cold Ischemia-Reperfusion Injury in Heart Transplantation Through Regulation of NF-kB Signaling and Bax/Bcl-xL Expression. Cell. Physiol. Biochem. 2018, 45, 1003–1012. [Google Scholar] [CrossRef] [PubMed]
- Fukunaga, N.; Kawajiri, H.; Badiwala, M.V.; Butany, J.; Li, R.K.; Billia, F.; Rao, V. Protective role of Nrf2 against ischemia reperfusion injury and cardiac allograft vasculopathy. Am. J. Transplant. 2020, 20, 1262–1271. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Lv, X.; Wang, X. MicroRNA 26a inhibits HMGB1 expression and attenuates cardiac ischemia-reperfusion injury. J. Pharmacol. Sci. 2016, 131, 6–12. [Google Scholar] [CrossRef]
- Ban, Q.; Qiao, L.; Xia, H.; Xie, B.; Liu, J.; Ma, Y.; Zhang, L.; Zhang, M.; Liu, L.G.; Jiao, W.; et al. β-catenin regulates myocardial ischemia/reperfusion injury following heterotopic heart transplantation in mice by modulating PTEN pathways. Am. J. Transl. Res. 2020, 12, 4757–4771. [Google Scholar]
- Hasegawa, T.; Visovatti, S.H.; Hyman, M.C.; Hayasaki, T.; Pinsky, D.J. Heterotopic vascularized murine cardiac transplantation to study graft arteriopathy. Nat. Protoc. 2007, 2, 471–480. [Google Scholar] [CrossRef]
- Benke, K.; Sayour, A.A.; Mátyás, C.; Ágg, B.; Németh, B.T.; Oláh, A.; Ruppert, M.; Hartyánszky, I.; Szabolcs, Z.; Radovits, T.; et al. Heterotopic Abdominal Rat Heart Transplantation as a Model to Investigate Volume Dependency of Myocardial Remodeling. Transplantation 2017, 101, 498–505. [Google Scholar] [CrossRef]
- Oberhuber, R.; Heinbokel, T.; Cetina Biefer, H.R.; Boenisch, O.; Hock, K.; Bronson, R.T.; Wilhelm, M.J.; Iwakura, Y.; Edtinger, K.; Uehara, H.; et al. CD11c+ Dendritic Cells Accelerate the Rejection of Older Cardiac Transplants via Interleukin-17A. Circulation 2015, 132, 122–131. [Google Scholar] [CrossRef]
- Heinbokel, T.; Quante, M.; Iske, J.; Nian, Y.; Maenosono, R.; Minami, K.; Liu, Y.; Azuma, H.; Elkhal, A.; Tullius, S.G. CTLA4-Ig prolongs graft survival specifically in young but not old mice. Am. J. Transplant. 2021, 21, 488–502. [Google Scholar] [CrossRef] [PubMed]
- Maenosono, R.; Nian, Y.; Iske, J.; Liu, Y.; Minami, K.; Rommel, T.; Martin, F.; Abdi, R.; Azuma, H.; Rosner, B.A.; et al. Recipient sex and estradiol levels affect transplant outcomes in an age-specific fashion. Am. J. Transplant. 2021, 21, 3239–3255. [Google Scholar] [CrossRef] [PubMed]
- Molinero, L.L.; Yin, D.; Lei, Y.M.; Chen, L.; Wang, Y.; Chong, A.S.; Alegre, M.L. High-Fat Diet-Induced Obesity Enhances Allograft Rejection. Transplantation 2016, 100, 1015–1021. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, M.; Yin, E.; Yanagisawa, T.; Jin, X.; Hara, M.; Matsuyama, S.; Imazuru, T.; Uchida, K.; Kawamura, M.; Niimi, M. Yogurt Feeding Induced the Prolongation of Fully Major Histocompatibility Complex-Mismatched Murine Cardiac Graft Survival by Induction of CD4(+)Foxp3(+) Cells. Transplant. Proc. 2017, 49, 1477–1482. [Google Scholar] [CrossRef] [PubMed]
- Galili, U. Xenotransplantation and ABO incompatible transplantation: The similarities they share. Transfus. Apher. Sci. 2006, 35, 45–58. [Google Scholar] [CrossRef]
- Park, S.; Lee, J.G.; Jang, J.Y.; Ryu, J.H.; Kim, D.J.; Chang, S.J.; Kim, H.; Chung, J.; West, L.; Yang, J. Induction of Accommodation by Anti-complement Component 5 Antibody-based Immunosuppression in ABO-incompatible Heart Transplantation. Transplantation 2019, 103, e248–e255. [Google Scholar] [CrossRef] [PubMed]
- Ballard, V.L.; Sharma, A.; Duignan, I.; Holm, J.M.; Chin, A.; Choi, R.; Hajjar, K.A.; Wong, S.C.; Edelberg, J.M. Vascular tenascin-C regulates cardiac endothelial phenotype and neovascularization. FASEB J. 2006, 20, 717–719. [Google Scholar] [CrossRef]
- Shen, H.; Heuzey, E.; Mori, D.N.; Wong, C.K.; Colangelo, C.M.; Chung, L.M.; Bruce, C.; Slizovskiy, I.B.; Booth, C.J.; Kreisel, D.; et al. Haptoglobin enhances cardiac transplant rejection. Circ. Res. 2015, 116, 1670–1679. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, X.; Gu, X.; Zhang, B.; Tian, W.; Han, H.; Sun, P.; Du, C.; Wang, H. Prolongation of Cardiac Allograft Survival by Endometrial Regenerative Cells: Focusing on B-Cell Responses. Stem Cells Transl. Med. 2017, 6, 778–787. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, S.; Lan, P.; Wu, C.; Dou, Y.; Xiao, X.; Zhang, Z.; Minze, L.; He, X.; Chen, W.; et al. Macrophage subpopulations and their impact on chronic allograft rejection versus graft acceptance in a mouse heart transplant model. Am. J. Transplant. 2018, 18, 604–616. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.; Ohori, S.; Meral, F.C.; Uehara, M.; Giannini, S.; Ichimura, T.; Smith, R.N.; Jolesz, F.A.; Guleria, I.; Zhang, Y.; et al. Testing the Efficacy of Contrast-Enhanced Ultrasound in Detecting Transplant Rejection Using a Murine Model of Heart Transplantation. Am. J. Transplant. 2017, 17, 1791–1801. [Google Scholar] [CrossRef] [PubMed]
- Daly, K.P.; Dearling, J.L.; Seto, T.; Dunning, P.; Fahey, F.; Packard, A.B.; Briscoe, D.M. Use of [18F]FDG Positron Emission Tomography to Monitor the Development of Cardiac Allograft Rejection. Transplantation 2015, 99, e132–e139. [Google Scholar] [CrossRef] [PubMed]
- Flögel, U.; Su, S.; Kreideweiss, I.; Ding, Z.; Galbarz, L.; Fu, J.; Jacoby, C.; Witzke, O.; Schrader, J. Noninvasive detection of graft rejection by in vivo (19) F MRI in the early stage. Am. J. Transplant. 2011, 11, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.A.; Bachmann, M.H.; Beilhack, A.; Yang, Y.; Tanaka, M.; Swijnenburg, R.J.; Reeves, R.; Taylor-Edwards, C.; Schulz, S.; Doyle, T.C.; et al. Molecular imaging using labeled donor tissues reveals patterns of engraftment, rejection, and survival in transplantation. Transplantation 2005, 80, 134–139. [Google Scholar] [CrossRef]
- Habertheuer, A.; Korutla, L.; Rostami, S.; Reddy, S.; Lal, P.; Naji, A.; Vallabhajosyula, P. Donor tissue-specific exosome profiling enables noninvasive monitoring of acute rejection in mouse allogeneic heart transplantation. J. Thorac. Cardiovasc. Surg. 2018, 155, 2479–2489. [Google Scholar] [CrossRef]
- Rodriguez-Barbosa, J.I.; Schneider, P.; Graca, L.; Bühler, L.; Perez-Simon, J.A.; Del Rio, M.L. The Role of TNFR2 and DR3 in the In Vivo Expansion of Tregs in T Cell Depleting Transplantation Regimens. Int. J. Mol. Sci. 2020, 21, 3347. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, D.; Dewald, O.; Peng, X.; Nie, W.; Rong, S.; Dudziak, D.; Lehmann, C.H.K.; Hoerning, A.; Fu, J. A Half-Century of Heterotopic Heart Transplantation in Mice: The Spearhead of Immunology Research. Transplantology 2024, 5, 298-311. https://doi.org/10.3390/transplantology5040030
Yin D, Dewald O, Peng X, Nie W, Rong S, Dudziak D, Lehmann CHK, Hoerning A, Fu J. A Half-Century of Heterotopic Heart Transplantation in Mice: The Spearhead of Immunology Research. Transplantology. 2024; 5(4):298-311. https://doi.org/10.3390/transplantology5040030
Chicago/Turabian StyleYin, Decheng, Oliver Dewald, Xiangyu Peng, Wenlong Nie, Song Rong, Diana Dudziak, Christian H. K. Lehmann, André Hoerning, and Jian Fu. 2024. "A Half-Century of Heterotopic Heart Transplantation in Mice: The Spearhead of Immunology Research" Transplantology 5, no. 4: 298-311. https://doi.org/10.3390/transplantology5040030
APA StyleYin, D., Dewald, O., Peng, X., Nie, W., Rong, S., Dudziak, D., Lehmann, C. H. K., Hoerning, A., & Fu, J. (2024). A Half-Century of Heterotopic Heart Transplantation in Mice: The Spearhead of Immunology Research. Transplantology, 5(4), 298-311. https://doi.org/10.3390/transplantology5040030