Adaptive Multi-Objective Resource Allocation for Edge-Cloud Workflow Optimization Using Deep Reinforcement Learning
Abstract
:1. Introduction
2. Literature Survey
3. Proposed Methodology
3.1. Architecture
3.2. Multi-Objective Resource Optimization in Edge-Cloud
3.3. Algorithm
Algorithm 1. Multi-objective resource optimization workflow scheduler |
1. Start |
; |
do |
4. Stop the non-executed scheduling decisions; |
5. Collect the information and update to available computational servers; |
6. Compute start time for every task of smart-urban workflow; |
; |
composed of unscheduled tasks do |
that are ready; |
in increasing order with starting time; |
do |
; |
all servers satisfying makespan constraint of Equation (16) and energy constraint of Equation (19) is obtained by employing deep reinforcement learning model; |
do |
16. Schedule the task in edge-platform; |
17. Else |
18. Schedule the task in cloud-platform; |
22. Compute the overall makespan using Equation (10), the processing energy |
consumption using Equation (15), and the cost using Equation (23); |
23. Stop. |
4. Results and Discussion
4.1. Makespan Performance
4.2. Processing Cost
4.3. Processing Energy Consumption
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rani, S.; Mishra, R.K.; Usman, M.; Kataria, A.; Kumar, P.; Bhambri, P.; Mishra, A.K. Amalgamation of Advanced Technologies for Sustainable Development of Smart City Environment: A Review. IEEE Access 2021, 9, 150060–150087. [Google Scholar] [CrossRef]
- Saleem, M.; Abbas, S.; Ghazal, T.M.; Khan, M.A.; Sahawneh, N.; Ahmad, M. Smart cities: Fusion-based intelligent traffic congestion control system for vehicular networks using machine learning techniques. Egypt. Inform. J. 2022, 23, 417–426. [Google Scholar] [CrossRef]
- Syed, S.; Sierra-Sosa, D.; Kumar, A.; Elmaghraby, A. IoT in Smart Cities: A Survey of Technologies, Practices and Challenges. Smart Cities 2021, 4, 429–475. [Google Scholar] [CrossRef]
- Alam, T. Cloud-Based IoT Applications and Their Roles in Smart Cities. Smart Cities 2021, 4, 1196–1219. [Google Scholar] [CrossRef]
- Sreenivasa, B.R.; Nirmala, C.R. Hybrid Time Centric Recommendation Model for E-Commerce Applications Using Behavioral Traits of User. Inf. Technol. Manag. 2022, 24, 133–146. [Google Scholar] [CrossRef]
- Sreenivasa, B.R.; Nirmala, C.R. Hybrid Location-Centric e-Commerce Recommendation Model Using Dynamic Behavioral Traits of Customer. Iran J. Comput. Sci. 2019, 2, 179–188. [Google Scholar] [CrossRef]
- Banerjee, P. MTD-DHJS: Makespan-Optimized Task Scheduling Algorithm for Cloud Computing with Dynamic Computational Time Prediction. IEEE Access 2023, 11, 105578–105618. [Google Scholar] [CrossRef]
- Kumar, M.S.; Karri, G.R. EEOA: Cost and Energy Efficient Task Scheduling in a Cloud-Fog Framework. Sensors 2023, 23, 2445. [Google Scholar] [CrossRef] [PubMed]
- Costa, D.G. A Survey of Emergencies Management Systems in Smart Cities. IEEE Access 2022, 10, 61843–61872. [Google Scholar] [CrossRef]
- Febrer, N.; Folkvord, F.; Lupiañez-Villanueva, F. Cost-Effectiveness Assessment of Internet of Things in Smart Cities. Front. Digit. Health 2021, 3, 662874. [Google Scholar] [CrossRef]
- Zhou, Q.; Sun, Y.; Lu, H.; Wang, K. Learning-based Green Workload Placement for Energy Internet in Smart Cities. J. Mod. Power Syst. Clean Energy 2022, 10, 91–99. [Google Scholar] [CrossRef]
- Jia, L.; Li, K.; Shi, X. Cloud Computing Task Scheduling Model Based on Improved Whale Optimization Algorithm. Wirel. Commun. Mob. Comput. 2021, 2021, 1–13. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, S.; Fan, W. Task Scheduling Mechanism Based on Reinforcement Learning in Cloud Computing. Mathematics 2023, 11, 3364. [Google Scholar] [CrossRef]
- Sangeetha, S.; Logeshwaran, J.; Faheem, M.; Kannadasan, R.; Sundararaju, S.; Vijayaraja, L. Smart performance optimization of energy-aware scheduling model for resource sharing in 5G green communication systems. J. Eng. 2024, 2024, e12358. [Google Scholar] [CrossRef]
- Murad, S.A.; Muzahid, A.J.M.; Azmi, Z.R.M.; Hoque, M.I.; Kowsher, M. A review on job scheduling technique in cloud computing and priority rule based intelligent framework. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 2309–2331. [Google Scholar] [CrossRef]
- Zheng, T.; Wan, J.; Zhang, J.; Jiang, C. Deep Reinforcement Learning-Based Workload Scheduling for Edge Computing. J. Cloud Comput. 2022, 11, 3. [Google Scholar] [CrossRef]
- He, J.; Liu, X. Hybrid Teaching–Learning-Based Optimization for Workflow Scheduling in Cloud Environment. IEEE Access 2023, 11, 100755–100768. [Google Scholar] [CrossRef]
- Udomkasemsub, O.; Sirinaovakul, B.; Achalakul, T. PHH: Policy-Based Hyper-Heuristic With Reinforcement Learning. IEEE Access 2023, 11, 52026–52049. [Google Scholar] [CrossRef]
- Rizvi, N.; Ramesh, D.; Rao, P.C.S.; Mondal, K. Intelligent Salp Swarm Scheduler With Fitness Based Quasi-Reflection Method for Scientific Workflows in Hybrid Cloud-Fog Environment. IEEE Trans. Autom. Sci. Eng. 2023, 20, 862–877. [Google Scholar] [CrossRef]
- Nagarajan, S.M.; Devarajan, G.G.; Mohammed, A.S.; Ramana, T.V.; Ghosh, U. Intelligent Task Scheduling Approach for IoT Integrated Healthcare Cyber Physical Systems. IEEE Trans. Netw. Sci. Eng. 2023, 10, 2429–2438. [Google Scholar] [CrossRef]
- Khaleel, M.I. A fault tolerance aware green IoT workflow scheduling algorithm for multi-dimensional resource utilization in sustainable cloud computing. Internet Things 2023, 23, 100909. [Google Scholar] [CrossRef]
- Nazari, A.; Sohrabi, S.; Mohammadi, R.; Nassiri, M.; Mansoorizadeh, M. IETIF: Intelligent Energy-Aware Task Scheduling Technique in IoT/Fog Networks. J. Sens. 2023, 2023, 1–13. [Google Scholar] [CrossRef]
- Khezri, E.; Yahya, R.O.; Hassanzadeh, H.; Mohaidat, M.; Ahmadi, S.; Trik, M. DLJSF: Data-Locality Aware Job Scheduling IoT tasks in fog-cloud computing environments. Results Eng. 2024, 21, 101780. [Google Scholar] [CrossRef]
- Ye, L.; Yang, L.; Xia, Y.; Zhao, X. A Cost-Driven Intelligence Scheduling Approach for Deadline-Constrained IoT Workflow Applications in Cloud Computing. IEEE Internet Things J. 2024, 11, 16033–16047. [Google Scholar] [CrossRef]
- Mangalampalli, S. Multi Objective Prioritized Workflow Scheduling Using Deep Reinforcement Based Learning in Cloud Computing. IEEE Access 2024, 12, 5373–5392. [Google Scholar] [CrossRef]
- Zhang, L.; Ai, M.; Liu, K.; Chen, J.; Li, K. Reliability Enhancement Strategies for Workflow Scheduling Under Energy Consumption Constraints in Clouds. IEEE Trans. Sustain. Comput. 2024, 9, 155–169. [Google Scholar] [CrossRef]
- Son, J.; He, T.; Buyya, R. CloudSimSDN-NFV: Modeling and simulation of network function virtualization and service function chaining in edge computing environments. Softw. Pract. Exp. 2019, 49, 1748–1764. [Google Scholar] [CrossRef]
- Workflow Dataset from Pegasus WMS. Available online: https://pegasus.isi.edu/workflow_gallery/ (accessed on 11 March 2024).
- SIPHT Dataset from Pegasus WMS. Available online: https://pegasus.isi.edu/workflow_gallery/gallery/sipht/index.php (accessed on 11 March 2024).
- CyberShake Dataset from Pegasus WMS. Available online: https://pegasus.isi.edu/workflow_gallery/gallery/cybershake/index.php (accessed on 11 March 2024).
Computation Model | Optimization Metrics | Optimization Model | Workflow Type | Workflow Used | Result Studied | |
---|---|---|---|---|---|---|
QMTSF [13] | Cloud computing | Resource allocation and efficiency | Reinforcement learning | Simple | Simulated workflow | Makespan and average task processing time |
EASA [14] | 5G and Cloud | Resource utilization and energy consumption | Optimal | Simple 5G traffic dataset | Smart city traffic | False discovery rate, false omission rate, prevalence threshold, and critical success index. |
F-ACO [24] | Cloud computing | Execution cost and idle time | Ant colony optimization with cost-driven heuristic | Simple workflow | IoT workflow application | cost |
MOPWS [25] | Cloud computing | Makespan and energy | Deep Q-Network | Complex Scientific workflow | CyberShake, Epigenomics, LIGO, and Montage | Makespan, and energy consumption |
RESWS [26] | Cloud computing | Energy and Reliability | Heuristic | Scientific workflow | Three realistic workflow | Energy, deadline, and reliability |
MOROWS [Proposed] | Edge-cloud | Energy and makespan | Deep reinforcement learning | Complex scientific workflow | SIPHT and CyberShake | Makespan, processing cost, and energy consumption |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lahza, H.; B R, S.; Lahza, H.F.M.; J, S. Adaptive Multi-Objective Resource Allocation for Edge-Cloud Workflow Optimization Using Deep Reinforcement Learning. Modelling 2024, 5, 1298-1313. https://doi.org/10.3390/modelling5030067
Lahza H, B R S, Lahza HFM, J S. Adaptive Multi-Objective Resource Allocation for Edge-Cloud Workflow Optimization Using Deep Reinforcement Learning. Modelling. 2024; 5(3):1298-1313. https://doi.org/10.3390/modelling5030067
Chicago/Turabian StyleLahza, Husam, Sreenivasa B R, Hassan Fareed M. Lahza, and Shreyas J. 2024. "Adaptive Multi-Objective Resource Allocation for Edge-Cloud Workflow Optimization Using Deep Reinforcement Learning" Modelling 5, no. 3: 1298-1313. https://doi.org/10.3390/modelling5030067
APA StyleLahza, H., B R, S., Lahza, H. F. M., & J, S. (2024). Adaptive Multi-Objective Resource Allocation for Edge-Cloud Workflow Optimization Using Deep Reinforcement Learning. Modelling, 5(3), 1298-1313. https://doi.org/10.3390/modelling5030067