Potential Effects of Oral Isotretinoin on Growth Plate and Height
Abstract
:1. Introduction
2. Methods
3. Normal Growth, Adrenarche, and Puberty
4. Growth Plate Regulation
5. Isotretinoin Effects on Bone and Growth Plate
6. Isotretinoin Effects on GH-IGF-I Axis and Pituitary Hormones
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bagatin, E.; Costa, C.S.; Rocha, M.; Picosse, F.R.; Kamamoto, C.S.L.; Pirmez, R.; Ianhez, M.; Miot, H.A. Consensus on the use of oral isotretinoin in dermatology-Brazilian Society of Dermatology. An. Bras. Dermatol. 2020, 95 (Suppl. 1), 19–38. [Google Scholar] [CrossRef] [PubMed]
- Habeshian, K.A.; Cohen, B.A. Current Issues in the Treatment of Acne Vulgaris. Pediatrics 2020, 145 (Suppl. 2), S225–S230. [Google Scholar] [CrossRef] [PubMed]
- Karadag, A.S.; Ertugrul, D.T.; Tutal, E.; Akin, K.O. Isotretinoin influences pituitary hormone levels in acne patients. Acta Derm. Venereol. 2011, 91, 31–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, R.; Clarke, S.; Thiboutot, D. Hormonal therapy for acne. Semin. Cutan. Med. Surg. 2008, 27, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Lolis, M.S.; Bowe, W.P.; Shalita, A.R. Acne and systemic disease. Med. Clin. N. Am. 2009, 93, 1161–1181. [Google Scholar] [CrossRef]
- Boguszewski, C.L.; Boguszewski, M. Growth Hormone’s Links to Cancer. Endocr. Rev. 2019, 40, 558–574. [Google Scholar] [CrossRef]
- Feily, A.; Namazi, M.R. Decrease of insulin growth factor-1 as a novel mechanism for anti-androgen effect of isotretinoin and its reported association with depression in some cases. J. Drugs Dermatol. 2011, 10, 793–794. [Google Scholar]
- Zouboulis, C.C.; Jourdan, E.; Picardo, M. Acne is an inflammatory disease and alterations of sebum composition initiate acne lesions. J. Eur. Acad. Dermatol. Venereol. 2014, 28, 527–532. [Google Scholar] [CrossRef]
- Kara, Y.A. Evaluation of serum insulin-like growth factor-1, insulin, glucose levels in patients with adolescent and post-adolescent acne. J. Cosmet. Dermatol. 2022, 21, 1292–1296. [Google Scholar] [CrossRef]
- Smith, T.M.; Gilliland, K.; Clawson, G.A.; Thiboutot, D. IGF-1 induces SREBP-1 expression and lipogenesis in SEB-1 sebocytes via activation of the phosphoinositide 3-kinase/Akt pathway. J. Investig. Dermatol. 2008, 128, 1286–1293. [Google Scholar] [CrossRef] [Green Version]
- Ben-Amitai, D.; Laron, Z. Effect of insulin-like growth factor-1 deficiency or administration on the occurrence of acne. J. Eur. Acad. Dermatol. Venereol. 2011, 25, 950–954. [Google Scholar] [CrossRef] [PubMed]
- Klinger, B.; Anin, S.; Silbergeld, A.; Eshet, R.; Laron, Z. Development of hyperandrogenism during treatment with insulin-like growth factor-I (IGF-I) in female patients with Laron syndrome. Clin. Endocrinol. 1998, 48, 81–87. [Google Scholar] [CrossRef]
- Berbis, P. Retinoids: Mechanisms of action. Ann. Dermatol. Venereol. 2010, 137 (Suppl. 3), S97–S103. [Google Scholar] [CrossRef]
- Zaenglein, A.L.; Levy, M.L.; Stefanko, N.S.; Benjamin, L.T.; Bruckner, A.L.; Choate, K.; Craiglow, B.G.; DiGiovanna, J.J.; Eichenfield, L.F.; Elias, P.; et al. Consensus recommendations for the use of retinoids in ichthyosis and other disorders of cornification in children and adolescents. Pediatr. Dermatol. 2021, 38, 164–180. [Google Scholar] [CrossRef] [PubMed]
- Rademaker, M. Isotretinoin: Dose, duration and relapse. What does 30 years of usage tell us? Australas. J. Dermatol. 2013, 54, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Alazawi, S.; Hendriksz, T. Analysis of the effects of isotretinoin on the premature epiphyseal closure in pediatric populations: A literature review. J. Osteopath Med. 2022, 122, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Bagatin, E.; Costa, C.S. The use of isotretinoin for acne-an update on optimal dosing, surveillance, and adverse effects. Expert Rev. Clin. Pharmacol. 2020, 13, 885–897. [Google Scholar] [CrossRef]
- Melnik, B.C. Apoptosis May Explain the Pharmacological Mode of Action and Adverse Effects of Isotretinoin, Including Teratogenicity. Acta Derm. Venereol. 2017, 97, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Karadag, A.S.; Ertugrul, D.T.; Tutal, E.; Akin, K.O. Short-term isotretinoin treatment decreases insulin-like growth factor-1 and insulin-like growth factor binding protein-3 levels: Does isotretinoin affect growth hormone physiology? Br. J. Dermatol. 2010, 162, 798–802. [Google Scholar] [CrossRef]
- Pease, C.N. Focal retardation and arrestment of growth of bones due to vitamin A intoxication. JAMA 1962, 182, 980–985. [Google Scholar] [CrossRef]
- Kodaka, T.; Takaki, H.; Soeta, S.; Mori, R.; Naito, Y. Local disappearance of epiphyseal growth plates in rats with hypervitaminosis A. J. Vet. Med. Sci. 1998, 60, 815–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuoka, M.; Onodera, T.; Majima, T.; Iwasaki, K.; Takahashi, D.; Kondo, E.; Iwasaki, N. Correction osteotomy for bilateral varus knee deformity caused by premature epiphyseal closure induced by hypervitaminosis A: A case report. BMC Musculoskelet. Disord. 2019, 20, 287. [Google Scholar] [CrossRef] [Green Version]
- Carroll Woodard, J.; Donovan, A.G.; Eckhoff, C. Vitamin (A and D)-induced premature physeal closure (hyena disease) in calves. J. Comp. Pathol. 1997, 116, 353–366. [Google Scholar] [CrossRef] [PubMed]
- Woodard, J.C.; Donovan, G.A.; Fisher, L.W. Pathogenesis of vitamin (A and D)-induced premature growth-plate closure in calves. Bone 1997, 21, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Karlberg, J. On the modelling of human growth. Stat. Med. 1987, 6, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Aguiar-Oliveira, M.H.; Souza, A.H.O.; Oliveira, C.R.P.; Campos, V.C.; Oliveira-Neto, L.A.; Salvatori, R. Mechanisms in Endocrinology: The multiple facets of GHRH/GH/IGF-I axis: Lessons from lifetime, untreated, isolated GH deficiency due to a GHRH receptor gene mutation. Eur. J. Endocrinol. 2017, 177, R85–R97. [Google Scholar] [CrossRef] [Green Version]
- Laron, Z. Lessons from 50 Years of Study of Laron Syndrome. Endocr. Pract. 2015, 21, 1395–1402. [Google Scholar] [CrossRef]
- Bernardini, S.; Spadoni, G.L.; Povoa, G.; Boscherini, B.; Hall, K. Plasma levels of insulin-like growth factor binding protein-1, and growth hormone binding protein activity from birth to the third month of life. Acta Endocrinol. 1992, 127, 313–318. [Google Scholar] [CrossRef]
- Bozzola, M.; Tettoni, K.; Locatelli, F.; Radetti, G.; Belloni, C.; Autelli, M.; Zecca, M.; Valentini, R.; Severi, F.; Tato, L. Postnatal variations of growth hormone bioactivity and of growth hormone-dependent factors. Arch. Pediatr. Adolesc. Med. 1996, 150, 1068–1071. [Google Scholar] [CrossRef]
- Low, L.C.; Tam, S.Y.; Kwan, E.Y.; Tsang, A.M.; Karlberg, J. Onset of significant GH dependence of serum IGF-I and IGF-binding protein 3 concentrations in early life. Pediatr. Res. 2001, 50, 737–742. [Google Scholar] [CrossRef] [Green Version]
- Ong, K.; Kratzsch, J.; Kiess, W.; Dunger, D.; Team, A.S. Circulating IGF-I levels in childhood are related to both current body composition and early postnatal growth rate. J. Clin. Endocrinol. Metab. 2002, 87, 1041–1044. [Google Scholar] [CrossRef] [PubMed]
- Albertsson-Wikland, K.; Rosberg, S.; Karlberg, J.; Groth, T. Analysis of 24-hour growth hormone profiles in healthy boys and girls of normal stature: Relation to puberty. J. Clin. Endocrinol. Metab. 1994, 78, 1195–1201. [Google Scholar] [CrossRef] [PubMed]
- Coutant, R.; de Casson, F.B.; Rouleau, S.; Douay, O.; Mathieu, E.; Gatelais, F.; Bouhours-Nouet, N.; Voinot, C.; Audran, M.; Limal, J.M. Divergent effect of endogenous and exogenous sex steroids on the insulin-like growth factor I response to growth hormone in short normal adolescents. J. Clin. Endocrinol. Metab. 2004, 89, 6185–6192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juul, A.; Bang, P.; Hertel, N.T.; Main, K.; Dalgaard, P.; Jorgensen, K.; Muller, J.; Hall, K.; Skakkebaek, N.E. Serum insulin-like growth factor-I in 1030 healthy children, adolescents, and adults: Relation to age, sex, stage of puberty, testicular size, and body mass index. J. Clin. Endocrinol. Metab. 1994, 78, 744–752. [Google Scholar] [CrossRef]
- Lofqvist, C.; Andersson, E.; Gelander, L.; Rosberg, S.; Blum, W.F.; Albertsson Wikland, K. Reference values for IGF-I throughout childhood and adolescence: A model that accounts simultaneously for the effect of gender, age, and puberty. J. Clin. Endocrinol. Metab. 2001, 86, 5870–5876. [Google Scholar] [CrossRef] [Green Version]
- Wood, C.L.; Lane, L.C.; Cheetham, T. Puberty: Normal physiology (brief overview). Best. Pract. Res. Clin. Endocrinol. Metab. 2019, 33, 101265. [Google Scholar] [CrossRef]
- Nilsson, O.; Marino, R.; De Luca, F.; Phillip, M.; Baron, J. Endocrine regulation of the growth plate. Horm. Res. 2005, 64, 157–165. [Google Scholar] [CrossRef]
- Biro, F.M.; Pinney, S.M.; Huang, B.; Baker, E.R.; Walt Chandler, D.; Dorn, L.D. Hormone changes in peripubertal girls. J. Clin. Endocrinol. Metab. 2014, 99, 3829–3835. [Google Scholar] [CrossRef] [Green Version]
- Rosenfield, R.L. Normal and Premature Adrenarche. Endocr. Rev 2021, 42, 783–814. [Google Scholar] [CrossRef]
- D’Andrea, C.R.; Alfraihat, A.; Singh, A.; Anari, J.B.; Cahill, P.J.; Schaer, T.; Snyder, B.D.; Elliott, D.; Balasubramanian, S. Part 1. Review and meta-analysis of studies on modulation of longitudinal bone growth and growth plate activity: A macro-scale perspective. J. Orthop. Res. 2021, 39, 907–918. [Google Scholar] [CrossRef]
- Agirdil, Y. The growth plate: A physiologic overview. EFORT Open Rev. 2020, 5, 498–507. [Google Scholar] [CrossRef]
- Shimo, T.; Koyama, E.; Okui, T.; Masui, M.; Kunisada, Y.; Ibaragi, S.; Yoshioka, N.; Kurio, N.; Yoshida, S.; Sasaki, A.; et al. Retinoic Receptor Signaling Regulates Hypertrophic Chondrocyte-specific Gene Expression. Vivo 2019, 33, 85–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Luca, F.; Uyeda, J.A.; Mericq, V.; Mancilla, E.E.; Yanovski, J.A.; Barnes, K.M.; Zile, M.H.; Baron, J. Retinoic acid is a potent regulator of growth plate chondrogenesis. Endocrinology 2000, 141, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Rausch, S.; Barholz, M.; Foller, M.; Feger, M. Vitamin A regulates fibroblast growth factor 23 (FGF23). Nutrition 2020, 79–80, 110988. [Google Scholar] [CrossRef]
- Nilsson, O.; Isoherranen, N.; Guo, M.H.; Lui, J.C.; Jee, Y.H.; Guttmann-Bauman, I.; Acerini, C.; Lee, W.; Allikmets, R.; Yanovski, J.A.; et al. Accelerated Skeletal Maturation in Disorders of Retinoic Acid Metabolism: A Case Report and Focused Review of the Literature. Horm. Metab. Res. 2016, 48, 737–744. [Google Scholar] [CrossRef] [Green Version]
- DiGiovanna, J.J. Isotretinoin effects on bone. J. Am. Acad. Dermatol. 2001, 45, S176–S182. [Google Scholar] [CrossRef] [PubMed]
- DiGiovanna, J.J.; Langman, C.B.; Tschen, E.H.; Jones, T.; Menter, A.; Lowe, N.J.; Eichenfield, L.; Hebert, A.A.; Pariser, D.; Savin, R.P.; et al. Effect of a single course of isotretinoin therapy on bone mineral density in adolescent patients with severe, recalcitrant, nodular acne. J. Am. Acad. Dermatol. 2004, 51, 709–717. [Google Scholar] [CrossRef]
- Duvalyan, A.; Cha, A.; Goodarzian, F.; Arkader, A.; Villablanca, J.G.; Marachelian, A. Premature epiphyseal growth plate arrest after isotretinoin therapy for high-risk neuroblastoma: A case series and review of the literature. Pediatr. Blood Cancer 2020, 67, e28236. [Google Scholar] [CrossRef]
- Milstone, L.M.; McGuire, J.; Ablow, R.C. Premature epiphyseal closure in a child receiving oral 13-cis-retinoic acid. J. Am. Acad. Dermatol. 1982, 7, 663–666. [Google Scholar] [CrossRef]
- Prendiville, J.; Bingham, E.A.; Burrows, D. Premature epiphyseal closure–a complication of etretinate therapy in children. J. Am. Acad. Dermatol. 1986, 15, 1259–1262. [Google Scholar] [CrossRef]
- Marini, J.C.; Hill, S.; Zasloff, M.A. Dense metaphyseal bands and growth arrest associated with isotretinoin therapy. Am. J. Dis. Child. 1988, 142, 316–318. [Google Scholar] [CrossRef]
- Standeven, A.M.; Davies, P.J.; Chandraratna, R.A.; Mader, D.R.; Johnson, A.T.; Thomazy, V.A. Retinoid-induced epiphyseal plate closure in guinea pigs. Fundam. Appl. Toxicol. 1996, 34, 91–98. [Google Scholar] [CrossRef]
- Steele, R.G.; Lugg, P.; Richardson, M. Premature epiphyseal closure secondary to single-course vitamin A therapy. Aust. N. Z. J. Surg. 1999, 69, 825–827. [Google Scholar] [CrossRef] [PubMed]
- Hobbie, W.L.; Mostoufi, S.M.; Carlson, C.A.; Gruccio, D.; Ginsberg, J.P. Prevalence of advanced bone age in a cohort of patients who received cis-retinoic acid for high-risk neuroblastoma. Pediatr. Blood Cancer 2011, 56, 474–476. [Google Scholar] [CrossRef]
- Luthi, F.; Eggel, Y.; Theumann, N. Premature epiphyseal closure in an adolescent treated by retinoids for acne: An unusual cause of anterior knee pain. Joint. Bone Spine 2012, 79, 314–316. [Google Scholar] [CrossRef]
- Zhao, S.; Goodson, N.J. Diffuse idiopathic skeletal hyperostosis and isotretinoin in cystic acne. BMJ Case Rep. 2015, 2015, bcr2015209775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noyes, J.J.; Levine, M.A.; Belasco, J.B.; Mostoufi-Moab, S. Premature Epiphyseal Closure of the Lower Extremities Contributing to Short Stature after cis-Retinoic Acid Therapy in Medulloblastoma: A Case Report. Horm. Res. Paediatr. 2016, 85, 69–73. [Google Scholar] [CrossRef] [Green Version]
- Steineck, A.; MacKenzie, J.D.; Twist, C.J. Premature physeal closure following 13-cis-retinoic acid and prolonged fenretinide administration in neuroblastoma. Pediatr. Blood Cancer 2016, 63, 2050–2053. [Google Scholar] [CrossRef] [PubMed]
- Park, W.K.; Choi, H.S.; Chung, C.Y.; Park, M.S.; Sung, K.H. Genu varum deformity due to premature epiphyseal closure after treatment with isotretinoin for neuroblastoma: A case report. J. Orthop. Surg. 2020, 28, 2309499020924483. [Google Scholar] [CrossRef]
- Koh, K.N.; Jeon, J.Y.; Park, S.S.; Im, H.J.; Kim, H.; Kang, M.S. Physeal Abnormalities in Children With High-risk Neuroblastoma Intensively Treated With/Without 13-Cis-Retinoic Acid. J. Pediatr. Orthop. 2021, 41, e841–e848. [Google Scholar] [CrossRef]
- Kvist, O.; Luiza Dallora, A.; Nilsson, O.; Anderberg, P.; Sanmartin Berglund, J.; Flodmark, C.E.; Diaz, S. A cross-sectional magnetic resonance imaging study of factors influencing growth plate closure in adolescents and young adults. Acta Paediatr. 2021, 110, 1249–1256. [Google Scholar] [CrossRef]
- Delgado, J.; Jaramillo, D.; Chauvin, N.A.; Guo, M.; Stratton, M.S.; Sweeney, H.E.; Barrera, C.A.; Mostoufi-Moab, S. Evaluating growth failure with diffusion tensor imaging in pediatric survivors of high-risk neuroblastoma treated with high-dose cis-retinoic acid. Pediatr. Radiol. 2019, 49, 1056–1065. [Google Scholar] [CrossRef] [PubMed]
- Horton, W.E.; Yamada, Y.; Hassell, J.R. Retinoic acid rapidly reduces cartilage matrix synthesis by altering gene transcription in chondrocytes. Dev. Biol. 1987, 123, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Melnik, B.C. p53: Key conductor of all anti-acne therapies. J. Transl. Med. 2017, 15, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Q.; Wang, X.; Bai, H.; Tan, X.; Liu, X. Effects of high-dose all-trans retinoic acid on longitudinal bone growth of young rats. Growth Horm. IGF Res. 2022, 62, 101446. [Google Scholar] [CrossRef]
- Karadag, A.S.; Takci, Z.; Ertugrul, D.T.; Bilgili, S.G.; Balahoroglu, R.; Takir, M. The effect of different doses of isotretinoin on pituitary hormones. Dermatology 2015, 230, 354–359. [Google Scholar] [CrossRef]
- Rodighiero, E.; Bertolani, M.; Saleri, R.; Pedrazzi, G.; Lotti, T.; Feliciani, C.; Satolli, F. Do acne treatments affect insulin-like growth factor-1 serum levels? A clinical and laboratory study on patients with acne vulgaris. Dermatol. Ther. 2020, 33, e13439. [Google Scholar] [CrossRef] [PubMed]
- Kaymak, Y.; Adisen, E.; Ilter, N.; Bideci, A.; Gurler, D.; Celik, B. Dietary glycemic index and glucose, insulin, insulin-like growth factor-I, insulin-like growth factor binding protein 3, and leptin levels in patients with acne. J. Am. Acad. Dermatol. 2007, 57, 819–823. [Google Scholar] [CrossRef]
- Smith, T.M.; Cong, Z.; Gilliland, K.L.; Clawson, G.A.; Thiboutot, D.M. Insulin-like growth factor-1 induces lipid production in human SEB-1 sebocytes via sterol response element-binding protein-1. J. Investig. Dermatol. 2006, 126, 1226–1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahaman, S.M.A.; De, D.; Handa, S.; Pal, A.; Sachdeva, N.; Ghosh, T.; Kamboj, P. Association of insulin-like growth factor (IGF)-1 gene polymorphisms with plasma levels of IGF-1 and acne severity. J. Am. Acad. Dermatol. 2016, 75, 768–773. [Google Scholar] [CrossRef]
- Sherman, S.I. Etiology, diagnosis, and treatment recommendations for central hypothyroidism associated with bexarotene therapy for cutaneous T-cell lymphoma. Clin. Lymphoma 2003, 3, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Masood, M.Q.; Hakeem, H. Isotretinoin associated reversible hypothyroidism. Thyroid 2011, 21, 1039–1040. [Google Scholar] [CrossRef] [PubMed]
Authors | Study Type | Reason for Retinoid Use | Dose and Duration of Therapy | Main Findings |
---|---|---|---|---|
Milstone et al., 1982 [49] | Case report 10-year-old boy | Epidermolytic hyperkeratosis | Oral isotretinoin: 0.5–4.5 mg/kg/day, cycles of 6 months followed by 2- to 4-week periods off drug; total of 4 years | Right knee pain; radiographic evidence of partial closure of the proximal epiphysis of the right tibia |
Prendiville et al., 1986 [50] | Case reports: Case 1: 8.5-year-old boy Case 2: 11-year-old girl | Case 1: nonbullous ichthyosiform erythroderma Case 2: systematized verrucous nevi | Case 1: etretinate (0.5–2.5 mg/kg/day for 6.3 years) Case 2: etretinate (1 mg/kg/day for 5.4 years) | Case 1: premature growth plate closure of the right distal tibial epiphysis; shortness of stature, thinning of long bones, and traumatic fractures Case 2: bilateral fusion of both elbow epiphyses and precocious narrowing of the upper and lower femoral epiphyses |
Marini et al., 1988 [51] | Case report: 13-year-old boy | Fibrodysplasia ossificans progressiva | Oral isotretinoin: 4–5 mg/kg/day, for 5 months | Striking growth arrest lines on long bones, metaphysis of upper and lower extremities. 5–9 months after discontinuance: gradual decrease of metaphyseal bands and resumption of clinical growth |
Standeven et al., 1996 [52] | Animal study: guinea pigs | Experimental study | Intraperitoneal isotretinoin: 21 mg/kg/day for 7 days via osmotic pump | Irreversible histological features of epiphyseal closure |
Woodard et al., 1997 [24] | Animal study: calves (6 treated and 6 controls) | Experimental study | Intramuscular vitamin A (2,000,000 IU) + vitamin D (300,000 IU) on the first day after birth, and oral vitamin A (10,000 IU/kg/day per 8 weeks), and after oral vitamin A (30,000 IU/kg/day per 8 weeks) | Premature closure of growth plate (proximal and distal tibia, radius, hind, and fore limbs) by microscopical examination in treated animals. After 1 week, bone growth of the proximal tibia of a control animal was 136 μg/day; in the treated animal it was 25 μg/day |
Kodaka et al., 1998 [21] | Animal study: 5 rats treated and 5 controls | Experimental study | Oral vitamin A: 50,000, 100,000, and 150,000 IU/100 g/day for 5 days from 4 weeks after birth | Premature growth plate disappearance; eosinophilic cartilage bands in higher dose groups |
Steele et al., 1999 [53] | Case report: 14-year-old boy | Cystic acne | Oral isotretinoin: 75 mg/kg/day for 6 months | Bilateral knee pain, genu valgum; closure of lateral femoral physis |
Hobbie et al., 2011 [54] | Retrospective review: 32 children (13 girls), 7.4–16.4-year-old | Neuroblastoma | Oral isotretinoin: Group 1 (24 patients): 6 cycles 160 mg/m2/day (2 weeks on, 2 weeks off) Group 2 (8 patients): did not receive isotretinoin | Group 1: advanced bone age in 7 children, 9.5 years (6–10.5) from diagnosis-younger median age at neuroblastoma diagnosis |
Luthi et al., 2012 [55] | Case report: 16-year-old boy | Acne refractory to topical treatments | Oral isotretinoin: 0.5 mg/kg/day for 7 months | Bilateral knee pain. Knee RM: acute epiphysiodesis lesions with irregular epiphyseal cartilage, and marked metaphyseal-epiphyseal oedema |
Zhao et al., 2015 [56] | Case report: 35-year-old man | Cystic acne | Oral isotretinoin: 4 cycles of 500 mg/kg/day for 6 months and a final long-term course gradually down-titrated to 20 mg/day from 15-year-old | Thoracic back pain, diffuse idiopathic skeletal hyperostosis |
Noyes et al., 2016 [57] | Case report: 9-year-old girl | Medulloblastoma | Oral isotretinoin: 11 cycles of 180 mg/m2/day (14-day cycles) for 13 months | Bilateral premature closure of distal femur and proximal tibia growth plates; normal bone age in the hand and wrist |
Steineck et al., 2016 [58] | Case series: Case A: 6-year-old girl (at diagnosis) Case B: 5-year-old boy (at diagnosis) | Neuroblastoma | Oral fenretide: Case A and B: 2475 mg/m2/day, delivered as 800 mg orally three times daily for 7 days, repeated every 21 days, 70 courses over 5 years (cumulative dose 1212,750 mg/m2) | Premature epiphyseal closure Case A: left knee pain; arm and leg length discrepancy, short adult stature (21-year-old): 154 cm (8th percentile), mid-parental height 172.7 cm (90th percentile). Case B: genu varum; short adult stature (20-year-old): 165 cm (5th percentile), mid-parental height unavailable. |
Matsuoka et al., 2019 [22] | Case report: 10-year-old girl | Neuroblastoma | Oral isotretinoin: initial dose of 20 mg/day and maintenance dose of 40 mg/day for a total period of 9.8 years from 1 year- old. | Knee pain, bilateral varus knee deformity due to premature epiphyseal closure; polar irregularity of chondrocytes and decreased cartilage matrix without apoptosis by histopathological examination of the growth plate |
Duvalyan et al., 2019 [48] | Case series: Case A: 9-year-old girl Case B: 11-year-old boy Case C: 10-year-old boy | Neuroblastoma | Oral isotretinoin Case A: 160 mg/m2/day, 2 weeks on, 2 weeks off (cumulative dose: 19,200 mg/m2) Case B and C: 160 mg/m2/day, 2 weeks on, 2 weeks off (cumulative dose: 13,440 mg/m2) | Bilateral knees plate closure Case A: right leg deformity and length discrepancy. Height at the 2.5 percentile (17-year-old) Case B: progressive genu valgum. Height at the 0.06 percentile (14-year-old) Case C: leg length discrepancy. Height at the 4.3 percentile (13-year-old) |
Park et al., 2020 [59] | Case report: 10-year-old boy | Neuroblastoma | Oral isotretinoin (72.3 mg/m2/day) for 1 year | Genu varum; premature epiphyseal closure |
Koh et al., 2021 [60] | Case-control study: 15 patients (8 girls): 4.9±1.7 years 12 controls (7 girls): 4.9 ± 1.9 years | Neuroblastoma | Oral isotretinoin (13 patients): 6 cycles of 160 mg/m2/day, 2 weeks on, 2 weeks off | 6/13: physeal abnormalities; asymmetric genu valgum deformity-higher risk of deformity if a child was above 5 years. No significant growth differences in height during follow-up |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso-Demartini, A.A.; Boguszewski, C.L.; Boguszewski, M.C.S. Potential Effects of Oral Isotretinoin on Growth Plate and Height. Endocrines 2023, 4, 281-292. https://doi.org/10.3390/endocrines4020023
Cardoso-Demartini AA, Boguszewski CL, Boguszewski MCS. Potential Effects of Oral Isotretinoin on Growth Plate and Height. Endocrines. 2023; 4(2):281-292. https://doi.org/10.3390/endocrines4020023
Chicago/Turabian StyleCardoso-Demartini, Adriane A., Cesar Luiz Boguszewski, and Margaret C. S. Boguszewski. 2023. "Potential Effects of Oral Isotretinoin on Growth Plate and Height" Endocrines 4, no. 2: 281-292. https://doi.org/10.3390/endocrines4020023
APA StyleCardoso-Demartini, A. A., Boguszewski, C. L., & Boguszewski, M. C. S. (2023). Potential Effects of Oral Isotretinoin on Growth Plate and Height. Endocrines, 4(2), 281-292. https://doi.org/10.3390/endocrines4020023