One-Step Cost-Effective Growth of High-Quality Epitaxial Ge Films on Si (100) Using a Simplified PECVD Reactor
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ye, H.; Yu, J. Germanium epitaxy on silicon. Sci. Technol. Adv. Mater. 2014, 15, 024601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.H.; Bao, S.; Lin, Y.; Li, W.; Anantha, P.; Zhang, L.; Wang, Y.; Michel, J.; Fitzgerald, E.A.; Tan, C.S. Hetero-epitaxy of high quality germanium film on silicon substrate for optoelectronic integrated circuit applications. J. Mater. Res. 2017, 32, 4025–4040. [Google Scholar] [CrossRef]
- Luo, Y.; Zheng, X.; Li, G.; Shubin, I.; Thacker, H.; Yao, J.; Lee, J.-H.; Feng, D.; Fong, J.; Kung, C.-C.; et al. Strong Electro-Absorption in GeSi Epitaxy on Silicon-on-Insulator (SOI). Micromachines 2012, 3, 345–363. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.-C.; Paeder, V.; Hvozdara, L.; Hartmann, J.-M.; Herzig, H.P. Low-loss germanium strip waveguides on silicon for the mid-infrared. Opt. Lett. 2012, 37, 2883–2885. [Google Scholar] [CrossRef] [PubMed]
- Nedeljkovic, M.; Penadés, J.S.; Mitchell, C.J.; Khokhar, A.Z.; Stankovic, S.; Bucio, T.D.; Littlejohns, C.G.; Gardes, F.Y.; Mashanovich, G.Z. Surface-Grating-Coupled Low-Loss Ge-on-Si Rib Waveguides and Multimode Interferometers. IEEE Photonics Technol. Lett. 2015, 27, 1040–1043. [Google Scholar] [CrossRef]
- Khazaka, R.; Aubin, J.; Nolot, E.; Hartmann, J.M. Investigation of the Growth of Si-Ge-Sn Pseudomorphic Layers on 200 mm Ge Virtual Substrates: Impact of Growth Pressure, HCl and Si2H6 Flows. ECS Trans. 2018, 86, 207–218. [Google Scholar] [CrossRef]
- Xu, C.; Senaratne, C.L.; Kouvetakis, J.; Menéndez, J. Compositional dependence of optical interband transition energies in GeSn and GeSiSn alloys. Solid-State Electron. 2015, 110, 76–82. [Google Scholar] [CrossRef]
- Kim, J.; Abou-Kandil, A.I.; Hong, A.J.; Saad, M.M.; Sadana, D.K.; Chen, T.-C. Efficiency enhancement of a-Si:H single junction solar cells by a-Ge:H incorporation at the p+ a-SiC:H/transparent conducting oxide interface. Appl. Phys. Lett. 2011, 99, 062102. [Google Scholar] [CrossRef]
- Wirths, S.; Buca, D.; Mussler, G.; Tiedemann, A.T.; Holländer, B.; Bernardy, P.; Stoica, T.; Grützmacher, D.; Mantl, S. Reduced Pressure CVD Growth of Ge and Ge1−xSnx Alloys. ECS J. Solid State Sci. Technol. 2013, 2, N99–N102. [Google Scholar] [CrossRef]
- Hartmann, J.-M.; Grampeix, H.; Clavelier, L. Epitaxial Growth of Ge Thick Layers on Nominal and 6oC off Si(001); Ge Surface Passivation by Si. ECS Trans. 2009, 16, 583–590. [Google Scholar] [CrossRef]
- Alharthi, B.; Grant, J.M.; Dou, W.; Grant, P.C.; Mosleh, A.; Mortazavi, M.; Li, B.; Naseem, H.; Yu, S.-Q.; Du, W. Heteroepitaxial Growth of Germanium-on-Silicon Using Ultrahigh-Vacuum Chemical Vapor Deposition with RF Plasma Enhancement. J. Electron. Mater. 2018, 47, 4561–4570. [Google Scholar] [CrossRef]
- Shah, V.; Dobbie, A.; Myronov, M.; Leadley, D. High quality relaxed Ge layers grown directly on a Si(001) substrate. Solid-State Electron. 2011, 62, 189–194. [Google Scholar] [CrossRef]
- Tan, Y.; Tan, C. Growth and characterization of germanium epitaxial film on silicon (001) using reduced pressure chemical vapor deposition. Thin Solid Films 2012, 520, 2711–2716. [Google Scholar] [CrossRef]
- Littlejohns, C.G.; Khokhar, A.Z.; Thomson, D.J.; Hu, Y.; Basset, L.; Reynolds, S.A.; Mashanovich, G.Z.; Reed, G.T.; Gardes, F.Y. Ge-on-Si Plasma-Enhanced Chemical Vapor Deposition for Low-Cost Photodetectors. IEEE Photonics J. 2015, 7, 1–8. [Google Scholar] [CrossRef]
- Cariou, R.; Ruggeri, R.; Tan, X.; Mannino, G.; Nassar, J.; Cabarrocas, P.R.I. Structural properties of relaxed thin film germanium layers grown by low temperature RF-PECVD epitaxy on Si and Ge (100) substrates. AIP Adv. 2014, 4, 77103. [Google Scholar] [CrossRef] [Green Version]
- Boentoro, T.W.; Szyszka, B. Protective Coatings for Optical Surfaces, Optical Thin Films and Coatings: From Materials to Applications; Woodhead Publishing Series in Electronic and Optical Materials; Woodhead Publishing: Sawston, UK, 2013; pp. 540–563. [Google Scholar]
- Satpathy, R.; Pamuru, V. Solar PV Power: Design, Manufacturing and Applications from Sand to Systems; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Gupta, K.; Jain, N.K.; Laubscher, R. Advanced Gear Manufacturing and Finishing: Classical and Modern Processes; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Tian, L.; Fathi, E.; Tarighat, R.S.; Sivoththaman, S. Nanocrystalline silicon deposition at high rate and low temperature from pure silane in a modified ICP-CVD system. Semicond. Sci. Technol. 2013, 28, 105004. [Google Scholar] [CrossRef]
- Mosleh, A.; Alher, M.A.; Cousar, L.C.; Du, W.; Ghetmiri, S.A.; Pham, T.; Grant, J.M.; Sun, G.; Soref, R.A.; Li, B.; et al. Direct Growth of Ge1−xSnx Films on Si Using a Cold-Wall Ultra-High Vacuum Chemical-Vapor-Deposition System. Front. Mater. 2015, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Carroll, M.S.; Sturm, J.C.; Yang, M. Low-Temperature Preparation of Oxygen- and Carbon-Free Silicon and Silicon-Germanium Surfaces for Silicon and Silicon-Germanium Epitaxial Growth by Rapid Thermal Chemical Vapor Deposition. J. Electrochem. Soc. 2000, 147, 4652–4659. [Google Scholar] [CrossRef]
- Asafa, T.B. Influence of Deposition Temperature and Pressure on Structural and Electrical Properties of Boron Doped Poly-Si13Ge87 Films Grown by Chemical Vapor Deposition. Nanosci. Nanotechnol. 2013, 3, 123–129. [Google Scholar]
- Greve, D.W. UHV/CVD and Related Growth Techniques for Si and Other Materials, Properties of Crystalline Silicon; Hull, R., Ed.; IET: London, UK, 1999. [Google Scholar]
- Suemitsu, M.; Nakazawa, H.; Morita, T.; Miyamoto, N. Observation of Hydrogen-Coverage- and Temperature-Dependent Adsorption Kinetics of Disilane on Si(100) during Si Gas-Source Molecular Beam Epitaxy. Jpn. J. Appl. Phys. 1997, 36, L625–L628. [Google Scholar] [CrossRef]
- Senftleben, O.; Baumgärtner, H.; Eisele, I. Cleaning of Silicon Surfaces for Nanotechnology. Mater. Sci. Forum 2008, 573–574, 77–117. [Google Scholar] [CrossRef]
- Ishii, H.; Takahashi, Y.; Murota, J. Selective Ge deposition on Si using thermal decomposition of GeH4. Appl. Phys. Lett. 1985, 47, 863–865. [Google Scholar] [CrossRef]
- Eres, G.; Sharp, J.W. The role of hydride coverage in surface-limited thin-film growth of epitaxial silicon and germanium. J. Appl. Phys. 1993, 74, 7241–7250. [Google Scholar] [CrossRef]
- Hall, L.H. The Thermal Decomposition of Germane. J. Electrochem. Soc. 1972, 119, 1593–1596. [Google Scholar] [CrossRef]
- Kobayashi, S.-I.; Cheng, M.-L.; Kohlhase, A.; Sato, T.; Murota, J.; Mikoshiba, N. Selective germanium epitaxial growth on silicon using CVD technology with ultra-pure gases. J. Cryst. Growth 1990, 99, 259–262. [Google Scholar] [CrossRef]
- Dou, W.; Alharthi, B.; Grant, P.C.; Grant, J.M.; Mosleh, A.; Tran, H.; Du, W.; Mortazavi, M.; Li, B.; Naseem, H.; et al. Crystalline GeSn growth by plasma enhanced chemical vapor deposition. Opt. Mater. Express 2018, 8, 3220–3229. [Google Scholar] [CrossRef]
- Chaurasia, S.; Raghavan, S.; Avasthi, S. Epitaxial germanium thin films on silicon (100) using two-step process. In Proceedings of the 2016 3rd International Conference on Emerging Electronics (ICEE), Mumbai, India, 27–30 December 2016; pp. 1–4. [Google Scholar]
- Ma, Q.-B.; Lieten, R.; Leys, M.; DeGroote, S.; Germain, M.; Borghs, G. Solid phase epitaxy of amorphous Ge films deposited by PECVD. J. Cryst. Growth 2011, 331, 40–43. [Google Scholar] [CrossRef]
- Hartmann, J.; Damlencourt, J.-F.; Bogumilowicz, Y.; Holliger, P.; Rolland, G.; Billon, T. Reduced pressure-chemical vapor deposition of intrinsic and doped Ge layers on Si(001) for microelectronics and optoelectronics purposes. J. Cryst. Growth 2005, 274, 90–99. [Google Scholar] [CrossRef]
- Olubuyide, O.O.; Danielson, D.T.; Kimerling, L.C.; Hoyt, J.L. Impact of seed layer on material quality of epitaxial germanium on silicon deposited by low pressure chemical vapor deposition. Thin Solid Films 2006, 508, 14–19. [Google Scholar] [CrossRef]
- Alharthi, B.; Dou, W.; Grant, P.C.; Grant, J.M.; Morgan, T.; Mosleh, A.; Li, B.; Mortazavi, M.; Naseem, H.; Yu, S.-Q. Low temperature epitaxy of high-quality Ge buffer using plasma enhancement via UHV-CVD system for photonic device applications. Appl. Surf. Sci. 2019, 481, 246–254. [Google Scholar] [CrossRef]
- Kil, Y.-H.; Yuk, S.-H.; Kim, J.H.; Kim, T.S.; Kim, Y.T.; Choi, C.-J.; Shim, K.-H. The low temperature epitaxy of Ge on Si (100) substrate using two different precursors of GeH4 and Ge2H6. Solid-State Electron. 2016, 124, 35–41. [Google Scholar] [CrossRef]
- Grant, P.C.; Dou, W.; Alharthi, B.; Grant, J.M.; Mosleh, A.; Du, W.; Li, B.; Mortazavi, M.; Naseem, H.A.; Yu, S.-Q. Comparison study of the low temperature growth of dilute GeSn and Ge. J. Vac. Sci. Technol. B 2017, 35, 061204. [Google Scholar] [CrossRef]
- Sorianello, V.; Colace, L.; Nardone, M.; Assanto, G. Thermally evaporated single-crystal Germanium on Silicon. Thin Solid Films 2011, 519, 8037–8040. [Google Scholar] [CrossRef]
- Fournier-Lupien, J.-H.; Mukherjee, S.; Wirths, S.; Pippel, E.; Hayazawa, N.; Mussler, G.; Hartmann, J.M.; Desjardins, P.; Buca, D.; Moutanabbir, O. Strain and composition effects on Raman vibrational modes of silicon-germanium-tin ternary alloys. Appl. Phys. Lett. 2013, 103, 263103. [Google Scholar] [CrossRef] [Green Version]
- Luan, H.-C.; Lim, D.R.; Lee, K.K.; Chen, K.M.; Sandland, J.G.; Wada, K.; Kimerling, L.C. High-quality Ge epilayers on Si with low threading-dislocation densities. Appl. Phys. Lett. 1999, 75, 2909–2911. [Google Scholar] [CrossRef]
- Dash, W.C.; Newman, R. Intrinsic Optical Absorption in Single-Crystal Germanium and Silicon at 77oK and 300oK. Phys. Rev. 1955, 99, 1151–1155. [Google Scholar] [CrossRef]
- Aly, S.A.; Akl, A.A. Influence of Film Thickness on Optical Absorption and Energy Gap of Thermally Evaporated Cds0.1se0.9 Thin Films. Chalcogenide Lett. 2015, 12, 489–496. [Google Scholar]
Run No. | Substrate Temperature (°C) | Chamber Pressure (Torr) | GeH4 Flow Rate (sccm) (GeH4 Partial Pressure (mTorr)) | Plasma Enhancement |
---|---|---|---|---|
1 | 385 | 1 | 20 (4) | No |
2 | 385 | 10 | 20 (4) | No |
3 | 385 | 10 | 80 (16) | No |
4 | 385 | 10 | 160 (32) | No |
5 | 350 | 1 | 20 (4) | No |
6 | 350 | 10 | 20 (4) | No |
7 | 350 | 10 | 80 (16) | No |
8 | 350 | 10 | 160 (32) | No |
9 | 350 | 1 | 20 (4) | Yes |
10 | 350 | 10 | 20 (4) | Yes |
11 | 350 | 10 | 80 (16) | Yes |
12 | 350 | 10 | 160 (32) | Yes |
Run No. | Film Thickness (nm) | Ge–Ge Peak Position (cm−1) | Calculated Strain % |
---|---|---|---|
2 | 75 | 300.27 | 0.17 |
4 | 600 | 300.87 | 0.03 |
6 | 60 | 300.14 | 0.21 |
8 | 200 | 300.88 | 0.03 |
10 | 210 | 300.88 | 0.03 |
12 | 400 | 300.97 | 0.007 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanjaria, J.; Hariharan, V.; Arjunan, A.C.; Wu, Y.; Tompa, G.S.; Yu, H. One-Step Cost-Effective Growth of High-Quality Epitaxial Ge Films on Si (100) Using a Simplified PECVD Reactor. Electron. Mater. 2021, 2, 482-494. https://doi.org/10.3390/electronicmat2040033
Vanjaria J, Hariharan V, Arjunan AC, Wu Y, Tompa GS, Yu H. One-Step Cost-Effective Growth of High-Quality Epitaxial Ge Films on Si (100) Using a Simplified PECVD Reactor. Electronic Materials. 2021; 2(4):482-494. https://doi.org/10.3390/electronicmat2040033
Chicago/Turabian StyleVanjaria, Jignesh, Venkat Hariharan, Arul Chakkaravarthi Arjunan, Yanze Wu, Gary S. Tompa, and Hongbin Yu. 2021. "One-Step Cost-Effective Growth of High-Quality Epitaxial Ge Films on Si (100) Using a Simplified PECVD Reactor" Electronic Materials 2, no. 4: 482-494. https://doi.org/10.3390/electronicmat2040033
APA StyleVanjaria, J., Hariharan, V., Arjunan, A. C., Wu, Y., Tompa, G. S., & Yu, H. (2021). One-Step Cost-Effective Growth of High-Quality Epitaxial Ge Films on Si (100) Using a Simplified PECVD Reactor. Electronic Materials, 2(4), 482-494. https://doi.org/10.3390/electronicmat2040033