A Unified Semiconductor-Device-Physics-Based Ballistic Model for the Threshold Voltage of Modern Multiple-Gate Metal-Oxide-Semiconductor Field-Effect-Transistors
Abstract
:1. Introduction
2. Model Description
2.1. Quasi-3D Scaling Theory for the Ballistic MG MOSFETs
2.2. Free Electron Concentration for the Ballistic MG MOSFETs
2.3. Criterion of Threshold Voltage for the Ballistic MG MOSFETs
2.4. Free Electron Concentration for the Low-Dimensional Ballistic MG MOSFETs
2.5. Criterion of Threshold Voltage for the Low-Dimensional Ballistic MG MOSFETs
3. Results and Discussion
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Badaroglu, M.; Gargini, A.P. System and high-volume manufacturing driven more Moore scaling roadmap. IEEE Electron Device Soc. News Lett. 2021, 28, 3–9. [Google Scholar]
- Raghavendra, M.; Vamshi, S.K.; Rohini, C. Low power high speed 4-dimension FinFET SRAM. In Proceedings of the 3rd International Conference for Emerging Technology Belgaum, Karnataka, India, 27–29 May 2022. [Google Scholar]
- Kahsani, M.H.; Hsakiba, H.; Sheikholeslami, A. A low-power high BW PAM4 VCSEL driver with three-tap FFE in 12-nm CMOS FinFET process. IEEE J. Solid-State Circuits 2024, 59, 1995–2004. [Google Scholar] [CrossRef]
- Balestra, F.; Cristoloveanu, S.; Benachir, M.; Brini, J.; Elewa, T. Double-gate Silicon-On-Insulator transistor with volume inversion: A new device with greatly enhanced performance. IEEE Electron Device Lett. 1987, 8, 410–412. [Google Scholar] [CrossRef]
- Taur, Y. Analytical solution to a double-gate MOSFET with Undoped body. IEEE Electron Device Lett. 2000, 21, 245–247. [Google Scholar] [CrossRef]
- Xiao, Z.R.; Zhu, H.L.; Wang, Q.; Chen, Z.; Liu, Z.Y.; Zhang, Y.K.; Yan, Z.J.; Shi, Y.F.; Zhou, N.; Gao, J.F.; et al. Vertical N-Type and P-Type Nanosheet FETs With C-Shaped Channel. IEEE Trans. Electron Devices 2023, 70, 1380–1385. [Google Scholar] [CrossRef]
- Xiong, X.; Tong, A.; Wang, X.; Liu, S.; Li, X.; Huang, R.; Wu, Y. Demonstration of Vertically-stacked CVD Monolayer Channels: MoS2 Nanosheets GAA-FET with Ion > 700 mA/mm and MoS2/WSe2 CFET. Int. Electron Device Meet. 2021, 161–165. [Google Scholar]
- Sung, P.J.; Chang, S.-W.; Kao, K.-H.; Wu, C.-T.; Su, C.-J.; Cho, T.-C.; Hsueh, F.-K.; Lee, W.-H.; Lee, Y.-J.; Chao, T.-S. Fabrication of Vertically Stacked Nanosheet Junctionless Field-Effect Transistors and Applications for the CMOS and CFET Inverters. IEEE Trans. Electron Devices 2020, 67, 3504–3509. [Google Scholar] [CrossRef]
- Yang, X.; Li, X.; Liu, Z.; Sun, Y.; Liu, Y.; Li, X.; Shi, Y. Impact of Process Variation on Nanosheet Gate-All-Around Complementary FET (CFET). IEEE Trans. Electron Devices 2022, 69, 4029–4036. [Google Scholar] [CrossRef]
- Yang, X.; Sun, Y.; Li, X.; Shi, Y.; Liu, Z. Compact Modeling of Process Variations in Nanosheet Complementary FET (CFET) and Circuit Performance Predictions. IEEE Trans. Electron Devices 2023, 70, 3935–3942. [Google Scholar] [CrossRef]
- Kim, S.K.; Lim, H.R.; Jeong, J.; Lee, S.W.; Jeong, H.J.; Park, J.; Kim, J.P.; Jeong, J.; Kim, B.H.; Ahn, S.-Y.; et al. Heterogeneous 3-D Sequential CFETs With Ge (110) Nanosheet p-FETs on Si (100) Bulk n-FETs. IEEE Trans. Electron Devices 2024, 71, 393–399. [Google Scholar] [CrossRef]
- Liou, J.J.; Chiang, T.-K. A Novel Effective-Conducting-Path-Induced Scaling Length Model and Its Application for Assessing Short-Channel Performance of Multiple-Gate MOSFETs. IEEE Trans. Electron Devices 2018, 65, 4535–4541. [Google Scholar] [CrossRef]
- SDEVICE: 3D Device Simulator, Sentaurus; Synopsys, Inc.: Sunnyvale, CA, USA, 2000.
- Gao, H.-W.; Wang, Y.-H.; Chiang, T.K. A Quasi-3-D Scaling Length Model for Trapezoidal FinFET and Its Application to Subthreshold Behavior Analysis. IEEE Trans. Nanotechnol. 2017, 16, 281–289. [Google Scholar] [CrossRef]
- Chiang, T.K. A Novel Scaling Theory for Fully-Depleted, Multiple-Gate MOSFET, Including Effective Number of Gates (ENG). IEEE Trans. Electron Devices 2014, 61, 631–633. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiang, T.-K. A Unified Semiconductor-Device-Physics-Based Ballistic Model for the Threshold Voltage of Modern Multiple-Gate Metal-Oxide-Semiconductor Field-Effect-Transistors. Electron. Mater. 2024, 5, 321-330. https://doi.org/10.3390/electronicmat5040020
Chiang T-K. A Unified Semiconductor-Device-Physics-Based Ballistic Model for the Threshold Voltage of Modern Multiple-Gate Metal-Oxide-Semiconductor Field-Effect-Transistors. Electronic Materials. 2024; 5(4):321-330. https://doi.org/10.3390/electronicmat5040020
Chicago/Turabian StyleChiang, Te-Kuang. 2024. "A Unified Semiconductor-Device-Physics-Based Ballistic Model for the Threshold Voltage of Modern Multiple-Gate Metal-Oxide-Semiconductor Field-Effect-Transistors" Electronic Materials 5, no. 4: 321-330. https://doi.org/10.3390/electronicmat5040020
APA StyleChiang, T.-K. (2024). A Unified Semiconductor-Device-Physics-Based Ballistic Model for the Threshold Voltage of Modern Multiple-Gate Metal-Oxide-Semiconductor Field-Effect-Transistors. Electronic Materials, 5(4), 321-330. https://doi.org/10.3390/electronicmat5040020