A Real Case: How to Combine Polarization Curve and EIS Techniques to Identify Problematic Cells in a Commercial PEM Stack
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mathematical Model Description
2.2. Test Setup and Main Equipment Description
- Potentiostat: Solartron SI1287 (Electrochemical Interface).
- Frequency analyzer: Solartron SI1255 HF (Frequency Response Analyzer).
3. Results
3.1. Test Results for Cell 79
- Open circuit voltage : 0.9585 V.
- Internal ohmic resistance : 0.00253 Ω.
- Mathematical expression of activation voltage loss: .
3.2. Test Results for Cell 40
- Open circuit voltage : 0.96483 V.
- Internal ohmic resistance : 0.00118 Ω.
- Mathematical expression of activation voltage loss: .
3.3. Test Result for Cell 2
- Open circuit voltage : 0.9631 V
- Internal ohmic resistance : 0.00165 Ω
- Mathematical expression of activation voltage loss:
4. Discussion
4.1. Open Circuit Voltage Discussion
4.2. Internal Ohmic Resistance Discussion
4.3. Activation Voltage Loss Discussion
5. Conclusions
- : Open circuit voltage.
- : Internal ohmic resistance.
- : Mathematical expression for activation voltage loss (AVL).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AVL | Activation Voltage Loss |
BEVs | Battery Electric Vehicles |
BOP | Balance of Plant |
CV | Cyclic Voltammetry |
CPE | Constant Phase Element |
EIS | Electrochemical Impedance Spectroscopy |
ER-EVs | Extended-range Electric Vehicles |
FCEVs | Fuel Cell Electric Vehicles |
GSC | Galvanostatic Charge |
HOR | Hydrogen Reduction Reaction |
HVs | Hybrid Vehicles |
OCV | Open Circuit Voltage |
ORR | Oxygen Reduction Reaction |
PEM | Polymer Electrolyte Membrane |
Rtc | Charge transfer resistance (Ω) |
References
- Mishra, A.; Talreja, P.; Shrivastava, A. Performance Evaluation of Electric Vehicle Stocks: Paving a Way Towards Green Economy. In Global Economic Revolutions: Big Data Governance and Business Analytics for Sustainability, Proceedings of the ICGER 2023. Communications in Computer and Information Science, Sharjah City, United Arab Emirates, 27–28 February 2023; Musleh, M.A., Al-Sartawi, A., Helmy Abd Wahab, M., Hussainey, K., Eds.; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Taljegard, M.; Göransson, L.; Odenberger, M.F.; Johnsson, F. Impacts of electric vehicles on the electricity generation portfolio—A Scandinavian-German case study. Appl. Energy 2019, 235, 1637–1650. [Google Scholar] [CrossRef]
- Shaukat, N.; Khan, B. E-Mobility: Transportation Sector in Transition. In Handbook of Climate Change Mitigation and Adaptation; Lackner, M., Sajjadi, B., Chen, W.Y., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Sanguesa, J.A.; Torres-Sanz, V.; Garrido, P.; Martinez, F.J.; Marquez-Barja, J.M. A Review on Electric Vehicles: Technologies and Challenges. Smart Cities 2021, 4, 372–404. [Google Scholar] [CrossRef]
- Fragiacomo, P.; Piraino, F.; Genovese, M.; Corigliano, O.; De Lorenzo, G. Strategic Overview on Fuel Cell-Based Systems for Mobility and Electrolytic Cells for Hydrogen Production. Procedia Comput. Sci. 2022, 200, 1254–1263. [Google Scholar] [CrossRef]
- Burkhardt, J.; Patyk, A.; Tanguy, P.; Retzke, C. Hydrogen mobility from wind energy—A life cycle assessment focusing on the fuel supply. Appl. Energy 2016, 181, 54–64. [Google Scholar] [CrossRef]
- Bragatto, T.; Bucarelli, M.A.; Carere, F.; Cavadenti, A.; Santori, F. Optimization of an energy district for fuel cell electric vehicles: Cost scenarios of a real case study on a waste and recycling fleet. Int. J. Hydrogen Energy 2022, 47, 40156–40171. [Google Scholar] [CrossRef]
- Oyewole, O.L.; Nwulu, N.I.; Okampo, E.J. Optimal design of hydrogen-based storage with a hybrid renewable energy system considering economic and environmental uncertainties. Energy Convers. Manag. 2024, 300, 117991. [Google Scholar] [CrossRef]
- Syré, A.M.; Shyposha, P.; Freisem, L.; Pollak, A.; Göhlich, D. Comparative Life Cycle Assessment of Battery and Fuel Cell Electric Cars, Trucks, and Buses. World Electr. Veh. J. 2024, 15, 114. [Google Scholar] [CrossRef]
- Mohammed, H.; Al-Othman, A.; Nancarrow, P.; Tawalbeh, M.; El Haj Assad, M. Direct hydrocarbon fuel cells: A promising technology for improving energy efficiency. Energy 2019, 172, 207–219. [Google Scholar] [CrossRef]
- Jayakumar, A.; Chalmers, A.; Lie, T.T. A review of Prospects for adoption of fuel electric vehicles in New Zealand. IET Electr. Syst. Transp. 2017, 7, 259–266. [Google Scholar] [CrossRef]
- Liu, P.; Xu, S. A review of low-temperature proton exchange membrane fuel cell degradation caused by repeated freezing start. Int. J. Hydrogen Energy 2023, 48, 8216–8246. [Google Scholar] [CrossRef]
- Aubry, J.; Steiner, N.Y.; Morando, S.; Zerhouni, N.; Hissel, D. Fuel cell diagnosis methods for embedded automotive applications. Energy Rep. 2022, 8, 6687–6706. [Google Scholar] [CrossRef]
- Cadet, C.; Jemeï, S.; Druart, F.; Hissel, D. Diagnostic tools for PEMFCs: From conception to implementation. Int. J. Hydrogen Energy 2014, 39, 10613–10626. [Google Scholar] [CrossRef]
- Pahon, E.; Hissel, D.; Jemei, S.; Steiner, N.Y. Signal-based diagnostic approach to enhance fuel cell durability. J. Power Sources 2021, 23, 230223. [Google Scholar] [CrossRef]
- Zhou, S.; Jervis, R. A Review of Polymer Electrolyte Fuel Cells Fault Diagnosis: Progress and Perspectives. Chem. Methods 2024, 4, e202300030. [Google Scholar] [CrossRef]
- Zheng, Z.; Petrone, R.; Péra, M.C.; Hissel, D.; Becherif, M.; Pianese, C.; Steiner, N.Y.; Sorrentino, M. A review on non-model based diagnosis methodologies for PEM fuel cell stacks and systems. Int. J. Hydrogen Energy 2013, 38, 8914–8926. [Google Scholar] [CrossRef]
- Gómez, G.; Argumosa, P.; Correro, A.; Maellas, J. Proposal of a New Technique to Obtain Some Fuel Cell Internal Parameters Using Polarization Curve Tests and EIS Results. Energies 2021, 14, 7161. [Google Scholar] [CrossRef]
- Manganiello, P.; Petrone, G.; Giannattasio, M.; Monmasson, E.; Spagnuolo, G. FPGA implementation of the EIS technique for the on-line diagnosis of fuel-cell systems. In Proceedings of the 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), Edinburgh, UK, 19–21 June 2017; pp. 981–986. [Google Scholar] [CrossRef]
- Wu, J.; Yuan, X.Z.; Wang, H.; Blanco, M.; Martin, J.J.; Zhang, J. Diagnostic tools in PEM fuel cell research: Part I Electrochemical techniques. Int. J. Hydrogen Energy 2008, 33, 1735–1746. [Google Scholar] [CrossRef]
- Pivac, I.; Radica, G.; Barbir, F.; Benouioua, D.; Harel, F.; Candusso, D. Deliverable D1.4 Diagnostic Methods for Automotive Fuel Cell Systems, GIANTLEAP Project no 700101. Fuel Cells and Hydrogen 2 Join Undertaking, 29 December 2017. Available online: https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5b77c06fa&appId=PPGMS (accessed on 30 June 2024).
- Najafi, B.; Bonomi, P.; Casalegno, A.; Rinaldi, F.; Baricci, A. Rapid Fault Diagnosis of PEM Fuel Cells through Optimal Electrochemical Impedance Spectroscopy Tests. Energies 2020, 13, 3643. [Google Scholar] [CrossRef]
- Zhang, C.; Li, W.; Hu, M.; Cheng, X.; He, K.; Mao, L. A Comparative Study of Using Polarization Curve Models in Proton Exchange Membrane Fuel Cell Degradation Analysis. Energies 2020, 13, 3759. [Google Scholar] [CrossRef]
- Aabid, S.E.; Turpin, C.; Regnier, J.; D’Arbigny, J.; Horde, T.; Pessot, A. Monitoring of Ageing Campaigns of PEM Fuel Cell Stacks Using a Model-Based Method. Int. J. Renew. Energy Res. 2021, 11, 92–100. [Google Scholar]
- Hu, Z.; Xu, L.; Li, J.; Gan, Q.; Xu, X.; Song, Z.; Shao, Y.; Ouyang, M. A novel diagnostic methodology for fuel cell stack health: Performance, consistency and uniformity. Energy Convers. Manag. 2019, 185, 611–621. [Google Scholar] [CrossRef]
- Pessot, A.; Turpin, C.; Jaafar, A.; Soyez, E.; Rallières, O.; Gager, G.; d’Arbigny, J. Contribution to the modelling of low temperature PEM fuel cell in aeronautical conditions by design of experiments. Math. Comput. Simul. 2019, 158, 179–198. [Google Scholar] [CrossRef]
- Malkov, T.; Pilenga, A.; Tsotridis, G.; de Marco, G. EU Harmonised Polarization Curve Test Method for Low Temperature Water Electrolysis. European Commission, Joint Research Centre, Directorate C: Energy, Transport and Climate. © European Union 2018. Available online: https://publications.jrc.ec.europa.eu/repository/bitstream/JRC104045/kjna29182enn_online.pdf (accessed on 30 June 2024).
- Mitzel, J.; Kabza, A.; Hunger, J.; Malkow, T.; Piela, P.; Laforet, H. Test Module P-08: Polarization Curve. Development of PEM Fuel Cell Stack Reference Test Procedures for Industry. STACK-TEST Project no. 303445. Fuel Cells and Hydrogen Joint Undertaking (FCH). 2015. Available online: http://stacktest.zsw-bw.de/fileadmin/stacktest/docs/Information_Material/Performance/TMs/TM_P-08_Polarisation_Curve.pdf (accessed on 30 June 2024).
- Mohsin, M.; Raza, R.; Mohsin-ul-Mulk, M.; Yousaf, A.; Hacker, V. Electrochemical characterization of polymer electrolyte membrane fuel cells and polarization curve analysis. Int. J. Hydrogen Energy 2020, 45, 24093–24107. [Google Scholar] [CrossRef]
- Piela, P.; Malkow, T.; de Marco, G. Test Module P-10c: H2-PEMFC and DMFC Stack Electrochemical Impedance Spectroscopy. Development of PEM Fuel Cell Stack Reference Test Procedures for Industry. STACK-TEST Project no. 303445. Fuel Cells and Hydrogen Joint Undertaking (FCH). 2015. Available online: http://stacktest.zsw-bw.de/fileadmin/stacktest/docs/Information_Material/Performance/TMs/TM_P-10c_Electrochemical_Method_Impedance_Spectroscopy.pdf (accessed on 30 June 2024).
- Macdonald, J.R.; Johnson, W.B. Fundamentals of Impedance Spectroscopy. In Theory, Experiment, and Aplications, 3rd ed.; Barsoukov, E., Macdonald, J.R., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; Chapter 1; pp. 1–20. ISBN 9781119333173. [Google Scholar]
- Yuan, X.-Z.; Song, C.; Wang, H.; Zhang, J. Electrochemical Impedance Spectroscopy in PEM Fuel Cells Fundamentals and Applications; Springer: London, UK, 2010. [Google Scholar]
- Mérida, W.; Harrington, D.A.; le Canut, J.M.; McLean, G. Characterization of proton exchange membrane fuel cell (PEMFC) failures via electrochemical impedance spectroscopy. J. Power Sources 2006, 161, 264–274. [Google Scholar] [CrossRef]
- Mousa, G.; Golnaraghi, F.; DeVaal, J.; Young, A. Detecting proton exchange membrane fuel cell hydrogen leak using electrochemical impedance spectroscopy method. J. Power Sources 2014, 246, 110–116. [Google Scholar] [CrossRef]
- Tang, Z.; Huang, Q.A.; Wang, Y.J.; Zhang, F.; Li, W.; Li, A.; Zhang, L.; Zhang, J. Recent progress in the use of electrochemical impedance spectroscopy for the measurement, monitoring, diagnosis and optimization of proton exchange membrane fuel cell performance. J. Power Sources 2020, 468, 228361. [Google Scholar] [CrossRef]
- le Canut, J.M.; Abouatallah, R.M.; Harrington, D.A. Detection of Membrane Drying, Fuel Cell Flooding, and Anode Catalyst Poisoning on PEMFC Stacks by Electrochemical Impedance Spectroscopy. J. Electrochem. Soc. 2006, 153, A857–A864. [Google Scholar] [CrossRef]
- Guo, X.; Dong, Z.; Shen, J.; Xu, Y.; He, Q.; Zhao, X.; Ding, Z. Towards intelligent and integrated architecture for hydrogen fuel cell system: Challenges and approaches. Natl. Sci. Open 2023, 2, 20220038. [Google Scholar] [CrossRef]
- Kong, Z.; Wu, J.; Liu, Z.; Yan, D.; Wu, Z.P.; Zhong, C.J. Advanced electrocatalysts for fuel cells: Evolution of active sites and synergistic properties of catalysts and carrier materials. Exploration 2024, 4, 20230052. [Google Scholar] [CrossRef]
- He, Y.; Tan, Q.; Lu, L.; Sokolowski, J.; Wu, G. Metal-Nitrogen-Carbon Catalysts for Oxygen Reduction in PEM Fuel Cells: Self-Template Synthesis Approach to Enhancing Catalytic Activity and Stability. Electrochem. Energy Rev. 2019, 2, 231–251. [Google Scholar] [CrossRef]
I (A) | RΩ (Ω) | Rtc (Ω) | T (F) | P |
---|---|---|---|---|
0.00 ± 0.01 | 0.106 ± 0.001 | 0.854 ± 0.010 | 3.134 ± 0.032 | 0.854 ± 0.010 |
0.50 ± 0.01 | 0.107 ± 0.000 | 0.102 ± 0.002 | 2.611 ± 0.063 | 0.816 ± 0.010 |
1.00 ± 0.01 | 0.107 ± 0.000 | (5.309 ± 0.070)·10−2 | 2.279 ± 0.068 | 0.833 ± 0.010 |
2.00 ± 0.01 | 0.107 ± 0.000 | (2.907 ± 0.036)·10−2 | 1.971 ± 0.075 | 0.854 ± 0.011 |
5.00 ± 0.01 | 0.107 ± 0.000 | (1.414 ± 0.002)·10−2 | 1.600 ± 0.078 | 0.898 ± 0.013 |
10.00 ± 0.01 | 0.106 ± 0.000 | (8.679 ± 0.201)·10−3 | 1.396 ± 0.135 | 0.945 ± 0.023 |
20.00 ± 0.01 | 0.106 ± 0.000 | (6.478 ± 0.212)·10−3 | 1.287 ± 0.186 | 0.955 ± 0.032 |
30.00 ± 0.01 | 0.106 ± 0.000 | (5.915 ± 0.312)·10−3 | 1.961 ± 0.438 | 0.911 ± 0.052 |
40.00 ± 0.01 | 0.106 ± 0.000 | (6.721 ± 0.352)·10−3 | 3.028 ± 0.609 | 0.839 ± 0.050 |
50.00 ± 0.01 | 0.106 ± 0.000 | (7.401 ± 0.424)·10−3 | 3.117 ± 0.700 | 0.863 ± 0.056 |
I (A) | RΩ (Ω) | Rtc (Ω) | T (F) | P |
---|---|---|---|---|
0.00 ± 0.01 | (9.37 ± 0.06)·10−2 | 1.163 ± 0.018 | 2.973 ± 0.036 | 0.844 ± 0.007 |
0.50 ± 0.01 | (9.44 ± 0.03)·10−2 | 0.104 ± 0.002 | 2.336 ± 0.068 | 0.834 ± 0.012 |
1.00 ± 0.01 | (9.35 ± 0.02)·10−2 | (5.971 ± 0.119)·10−2 | 2.327 ± 0.086 | 0.815 ± 0.012 |
2.00 ± 0.01 | (9.20 ± 0.02)·10−2 | (3.278 ± 0.044)·10−2 | 1.875 ± 0.076 | 0.856 ± 0.012 |
5.00 ± 0.01 | (9.00 ± 0.01)·10−2 | (1.586 ± 0.020)·10−2 | 1.521 ± 0.073 | 0.891 ± 0.012 |
10.00 ± 0.01 | (8.91 ± 0.02)·10−2 | (9.480 ± 0.218)·10−3 | 1.192 ± 0.109 | 0.948 ± 0.022 |
20.00 ± 0.01 | (8.81 ± 0.01)·10−2 | (6.478 ± 0.212)·10−3 | 1.287 ± 0.186 | 0.955 ± 0.032 |
30.00 ± 0.01 | (8.80 ± 0.01)·10−2 | (5.738 ± 0.233)·10−3 | 1.512 ± 0.270 | 0.942 ± 0.040 |
40.00 ± 0.01 | (8.76 ± 0.02)·10−2 | (5.950 ± 0.321)·10−3 | 1.760 ± 0.420 | 0.928 ± 0.054 |
50.00 ± 0.01 | (8.73 ± 0.03)·10−2 | (6.310 ± 0.363)·10−3 | 2.408 ± 0.550 | 0.861 ± 0.054 |
I (A) | RΩ (Ω) | Rtc (Ω) | T (F) | P |
---|---|---|---|---|
0.00 ± 0.01 | (9.37 ± 0.06)·10−2 | 1.163 ± 0.018 | 2.973 ± 0.036 | 0.844 ± 0.007 |
0.50 ± 0.01 | (9.90 ± 0.03)·10−2 | 0.107 ± 0.002 | 2.337 ± 0.074 | 0.829 ± 0.013 |
1.00 ± 0.01 | (9.80 ± 0.03)·10−2 | (5.969 ± 0.103)·10−2 | 2.231 ± 0.080 | 0.826 ± 0.012 |
2.00 ± 0.01 | (9.65 ± 0.02)·10−2 | (3.236 ± 0.043)·10−2 | 1.895 ± 0.078 | 0.850 ± 0.012 |
5.00 ± 0.01 | (9.43 ± 0.02)·10−2 | (1.514 ± 0.022)·10−2 | 1.460 ± 0.081 | 0.904 ± 0.015 |
10.00 ± 0.01 | (9.36 ± 0.01)·10−2 | (9.246 ± 0.181)·10−3 | 1.225 ± 0.101 | 0.950 ± 0.020 |
20.00 ± 0.01 | (9.29 ± 0.01)·10−2 | (6.447 ± 0.186)·10−3 | 1.261 ± 0.160 | 0.960 ± 0.028 |
30.00 ± 0.01 | (9.27 ± 0.01)·10−2 | (5.700 ± 0.265)·10−3 | 1.559 ± 0.325 | 0.944 ± 0.046 |
40.00 ± 0.01 | (9.21 ± 0.02)·10−2 | (5.431 ± 0.299)·10−3 | 1.561 ± 0.389 | 0.963 ± 0.056 |
50.00 ± 0.01 | (9.18 ± 0.05)·10−2 | (7.266 ± 0.732)·10−3 | 4.209 ± 1.5031 | 0.779 ± 0.091 |
Rtc (Ω) | AVL (Ω) | ||||||
---|---|---|---|---|---|---|---|
Cell 2 | Cell 40 | Cell 79 | Cell 2 | Cell 40 | Cell 79 | ||
0.0 A | 1.1630 | 1.1630 | 0.8540 | 0.0 A | 2.6202 | 2.6053 | 1.8586 |
0.5 A | 0.1070 | 0.1040 | 0.1020 | 0.5 A | 0.2387 | 0.2311 | 0.2176 |
1.0 A | 0.0597 | 0.0597 | 0.0531 | 1.0 A | 0.1370 | 0.1352 | 0.1227 |
2.0 A | 0.0324 | 0.0328 | 0.0291 | 2.0 A | 0.0772 | 0.0778 | 0.0674 |
5.0 A | 0.0151 | 0.0159 | 0.0141 | 5.0 A | 0.0356 | 0.0369 | 0.0299 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez, G.; Argumosa, P.; Maellas, J. A Real Case: How to Combine Polarization Curve and EIS Techniques to Identify Problematic Cells in a Commercial PEM Stack. Fuels 2024, 5, 476-493. https://doi.org/10.3390/fuels5030026
Gómez G, Argumosa P, Maellas J. A Real Case: How to Combine Polarization Curve and EIS Techniques to Identify Problematic Cells in a Commercial PEM Stack. Fuels. 2024; 5(3):476-493. https://doi.org/10.3390/fuels5030026
Chicago/Turabian StyleGómez, Guillermo, Pilar Argumosa, and Jesús Maellas. 2024. "A Real Case: How to Combine Polarization Curve and EIS Techniques to Identify Problematic Cells in a Commercial PEM Stack" Fuels 5, no. 3: 476-493. https://doi.org/10.3390/fuels5030026
APA StyleGómez, G., Argumosa, P., & Maellas, J. (2024). A Real Case: How to Combine Polarization Curve and EIS Techniques to Identify Problematic Cells in a Commercial PEM Stack. Fuels, 5(3), 476-493. https://doi.org/10.3390/fuels5030026