Potential for Biogas Production from Water Hyacinth and Banana Peels: A Case Study of Substrates Harvested from Lomé, Togo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrates Collection and Preparation
2.2. Characterization of the Substrates
2.2.1. Ultimate Analysis
2.2.2. Proximate Analysis
2.2.3. Fiber Content Analysis
2.3. Biogas Production Test
2.3.1. Inoculum Collection
2.3.2. Batch Anaerobic Digestion Tests of Water Hyacinth Leaves, Water Hyacinth Stems, and Banana Peels
2.3.3. Statistical Significance Tests of the Differences in Cumulative Biogas Yield
3. Results and Discussion
3.1. Ultimate Analysis Results
3.2. Proximate Analysis Results
3.3. Fiber Content Analysis Results
3.4. Biogas Production from Water Hyacinth Leaves, Water Hyacinth Stems, and Banana Peels
3.5. Statistical Significance of the Differences in Biogas Yield and Impact of the Substrate Composition
3.6. Utilization Pathways and Valorization of Products and By-Products from Anaerobic Digestion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
AC | Ash content |
VS | Volatile solid |
TS | Total solid |
MC | Moisture content |
ADL | Acid detergent lignin |
NDF | Neutral detergent fiber |
ADF | Acid detergent fiber |
WH | Water hyacinth |
WHS | Water hyacinth stems |
WHL | Water hyacinth leaves |
WHR | Water hyacinth roots |
BP | Banana peels |
BMBF | German Federal Ministry of Education and Research |
HTC | Hydrothermal carbonisation |
HTG | Hydrothermal gasification |
WASCAL | West African Science Service Centre on Climate Change and Adapted Land Use |
References
- Osman, A.I.; Deka, T.J.; Baruah, D.C.; Rooney, D.W. Critical challenges in biohydrogen production processes from the organic feedstocks. Biomass Convers. Biorefinery 2023, 13, 8383–8401. [Google Scholar] [CrossRef]
- Ellacuriaga, M.; García-Cascallana, J.; Gómez, X. Biogas Production from Organic Wastes: Integrating Concepts of Circular Economy. Fuels 2021, 2, 144–167. [Google Scholar] [CrossRef]
- Barua, V.B.; Rathore, V.; Kalamdhad, A.S. Anaerobic co-digestion of water hyacinth and banana peels with and without thermal pretreatment. Renew. Energy 2019, 134, 103–112. [Google Scholar] [CrossRef]
- Ruan, T.; Zeng, R.; Yin, X.-Y.; Zhang, S.-X.; Yang, Z.-H. Water Hyacinth (Eichhornia crassipes) Biomass as a Biofuel Feedstock by Enzymatic Hydrolysis. BioResources 2016, 11, 2372–2380. [Google Scholar] [CrossRef]
- Asante, E.; Asiedu, N.Y.; Sarpong, S.; Agyemang, E.O.; Ajani, I.; Ntiamoah, A.; Adjaottor, A.A.; Addo, A. Modeling and assessment of the techno-economic analysis of biogas and its potential for the generation of electricity from water hyacinth biomass. J. Eng. Appl. Sci. 2024, 71, 1–19. [Google Scholar] [CrossRef]
- Togo Bananas Production. 1961–2023. Available online: https://knoema.com/atlas/Togo/topics/Agriculture/Crops-Production-Quantity-tonnes/Bananas-production (accessed on 19 February 2024).
- George, S.; Thomas, S.; Nedumpillil, N.N.; Jose, S. Extraction and Characterization of Fibers from Water Hyacinth Stem Using a Custom-Made Decorticator. J. Nat. Fibers 2023, 20, 2212927. [Google Scholar] [CrossRef]
- Arivendan, A.; Thangiah, W.J.J.; Das, R.; Ahamad, D.; Chithra, G.K. Effect of water hyacinth (Eichhornia crassipes) plant into water bodies and its composite materials for commercial applications. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2023, 237, 5381–5390. [Google Scholar] [CrossRef]
- Wauton and William-Ebi. Available online: www.jmess.org (accessed on 21 February 2024).
- Kabenge, I.; Omulo, G.; Banadda, N.; Seay, J.; Zziwa, A.; Kiggundu, N. Characterization of Banana Peels Wastes as Potential Slow Pyrolysis Feedstock. J. Sustain. Dev. 2018, 11, 14. [Google Scholar] [CrossRef]
- Daniel, F.; Sekar, M.; Gavurová, B.; Govindasamy, C.; R, K.M.; P, B.; R, P.T. Recovering biogas and nutrients via novel anaerobic co-digestion of pre-treated water hyacinth for the enhanced biogas production. Environ. Res. 2023, 231, 116216. [Google Scholar] [CrossRef]
- Wirngo, H.Y.; Bamgboye, A.I.; Ngwabie, N.M. Biogas production from water hyacinth (Eichhornia crassipes) harvested from River Wouri, Douala, Cameroon. J. Appl. Nat. Sci. 2024, 16, 883–889. [Google Scholar] [CrossRef]
- Hudakorn, T.; Sritrakul, N. Biogas and biomass pellet production from water hyacinth. Energy Rep. 2020, 6, 532–538. [Google Scholar] [CrossRef]
- Nugraha, W.D.; Syafrudin; Pradita, L.L.; A Matin, H.H. Budiyono Biogas Production from Water Hyacinth (Eichhornia crassipes): The Effect of F/M Ratio. IOP Conf. Ser. Earth Environ. Sci. 2018, 150, 012019. [Google Scholar] [CrossRef]
- Manigandan, S.; R, P.T.; Anderson, A.; Maryam, A.; Mahmoud, E. Benefits of pretreated water hyacinth for enhanced anaerobic digestion and biogas production. Int. J. Thermofluids 2023, 19, 100369. [Google Scholar] [CrossRef]
- Achinas, S.; Krooneman, J.; Euverink, G.J.W. Enhanced Biogas Production from the Anaerobic Batch Treatment of Banana Peels. Engineering 2019, 5, 970–978. [Google Scholar] [CrossRef]
- Tosin, R.; Monteiro-Silva, F.; Martins, R.; Cunha, M. A New Approach for Element Characterization of Grapevine Tissue with Laser-Induced Breakdown Spectroscopy. Horticulturae 2024, 10, 82. [Google Scholar] [CrossRef]
- Jan Liebetrau, E.; Pfeiffer, D. Biomass Energy Use Collection of Methods for Biogas; Report; DBFZ: Leipzig, Germany, 2020; Volume 457, pp. 50–106. [Google Scholar]
- Verein Deutscher Ingenieure. VDI 4630: Fermentation of Organic Materials: Characterisation of the Substrate, Sampling, Collection of Material Data, Fermentation Tests; Beuth Verlag: Berlin, Germany, 2016. [Google Scholar]
- Rajagopalan, G.; He, J.; Yang, K.L. Direct fermentation of xylan by Clostridium strain BOH3 for the production of butanol and hydrogen using optimized culture medium. Bioresour. Technol. 2014, 154, 38–43. [Google Scholar] [CrossRef]
- Hassan, S.; Ngo, T.; Khudur, L.S.; Krohn, C.; Dike, C.C.; Hakeem, I.G.; Shah, K.; Surapaneni, A.; Ball, A.S. Biosolids-Derived Biochar Improves Biomethane Production in the Anaerobic Digestion of Chicken Manure. Resources 2023, 12, 123. [Google Scholar] [CrossRef]
- Pérez-Rangel, M.; Barboza-Corona, J.E.; Buitrón, G.; Valdez-Vazquez, I. Essential Nutrients for Improving the Direct Processing of Raw Lignocellulosic Substrates Through the Dark Fermentation Process. Bioenergy Res. 2020, 13, 349–357. [Google Scholar] [CrossRef]
- Sukarni, S.; Zakaria, Y.; Sumarli, S.; Wulandari, R.; Permanasari, A.A.; Suhermanto, M. Physical and Chemical Properties of Water Hyacinth (Eichhornia crassipes) as a Sustainable Biofuel Feedstock. IOP Conf. Series: Mater. Sci. Eng. 2019, 515, 012070. [Google Scholar] [CrossRef]
- Omondi, E.A.; Ndiba, P.K.; Njuru, P.G. Characterization of water hyacinth (E. crassipes) from Lake Victoria and ruminal slaughterhouse waste as co-substrates in biogas production. SN Appl. Sci. 2019, 1, 1–10. [Google Scholar] [CrossRef]
- Elsamadony, M.; Tawfik, A. Maximization of hydrogen fermentative process from delignified water hyacinth using sodium chlorite. Energy Convers. Manag. 2018, 157, 257–265. [Google Scholar] [CrossRef]
- Yi, J.; Dong, B.; Jin, J.; Dai, X. Effect of Increasing Total Solids Contents on Anaerobic Digestion of Food Waste under Mesophilic Conditions: Performance and Microbial Characteristics Analysis. PLoS ONE 2014, 9, e102548. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Cheng, J.; Zhou, J.; Song, W.; Cen, K. Hydrogen production from water hyacinth through dark- and photo- fermentation. Int. J. Hydrogen Energy 2010, 35, 8929–8937. [Google Scholar] [CrossRef]
- Lara, M.A.; Méndez, E.F.; Malagón, D.H.; Bernal, J.M.; Montoya, D. Evaluation of production of hydrogen in a batch bioreactor using Clostridium butyricum DSM 2478 from banana peel. Chem. Eng. Trans. 2020, 79, 265–270. [Google Scholar] [CrossRef]
- Mirmohamadsadeghi, S.; Karimi, K.; Azarbaijani, R.; Yeganeh, L.P.; Angelidaki, I.; Nizami, A.-S.; Bhat, R.; Dashora, K.; Vijay, V.K.; Aghbashlo, M.; et al. Pretreatment of lignocelluloses for enhanced biogas production: A review on influencing mechanisms and the importance of microbial diversity. Renew. Sustain. Energy Rev. 2021, 135, 110173. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, Y.; Yuan, Z. Improving food waste composting efficiency with mature compost addition. Bioresour. Technol. 2022, 349, 126830. [Google Scholar] [CrossRef]
- Proskynitopoulou, V.; Garagounis, I.; Vourros, A.; Toursidis, P.D.; Lorentzou, S.; Zouboulis, A.; Panopoulos, K. Nutrient recovery from digestate: Pilot test experiments. J. Environ. Manag. 2024, 353, 120166. [Google Scholar] [CrossRef]
- Mikusińska, J.; Kuźnia, M.; Czerwińska, K.; Wilk, M. Hydrothermal Carbonization of Digestate Produced in the Biogas Production Process. Energies 2023, 16, 5458. [Google Scholar] [CrossRef]
Chemical Elements | Composition (wt%) | |||
---|---|---|---|---|
BP | WHL | WHS | WHR | |
C | 48.98 ± 4.62 | 30.58 ± 9.51 | 28.70 ± 2.17 | 18.44 ± 5.53 |
H | 14.14 ± 1.55 | 18.08 ± 7.28 | 8.80 ± 0.46 | 4.90 ± 2.05 |
O | 12.22 ± 7.72 | 29.76 ± 12.28 | 47.90 ± 1.91 | 47.62 ± 2.07 |
K | 23.36 ± 4.18 | 15.52 ± 5.64 | 10.74 ± 0.84 | 22.32 ± 5.71 |
Na | - | 2.52 ± 0.67 | 3.90 ± 0.52 | 5.36 ± 0.27 |
Ca | - | - | - | 0.76 ± 0.47 |
Si | 1.30 ± 0.84 | 3.54 ± 2.41 | - | 0.60 ± 0.39 |
Parameter | WHL | WHS | WHR | BP |
---|---|---|---|---|
MC (wt%) | 6.50 ± 0.02 | 6.45 ± 0.20 | 4.64 ± 0.25 | 2.93 ± 0.04 |
VS (wt%) | 77.81 ± 0.15 | 70.42 ± 0.25 | 71.74 ± 0.39 | 80.63 ± 0.05 |
AC (wt%) | 15.69 ± 0.14 | 23.11 ± 0.06 | 23.62 ± 0.21 | 16.44 ± 0.09 |
TS (wt%) | 93.50 ± 0.02 | 93.53 ± 0.20 | 95.36 ± 0.25 | 97.07 ± 0.04 |
BP | WHL | WHS | WHR | |
---|---|---|---|---|
Cellulose (%TS) | 11.71 | 18.73 | 27.08 | 21.22 |
Hemicellulose (%TS) | 10.37 | 25.73 | 18.4 | 17.61 |
Lignin (%TS) | 21.03 | 5.08 | 4.47 | 5.77 |
Sample Pair | Mean Difference | p-Value | Conclusion |
---|---|---|---|
Blank vs. WHS | −20.67479 | 0.0000 | There is a significant statistical difference in biogas production between blank and WHS. |
Blank vs. WHL | −17.56163 | 0.0000 | There is a significant statistical difference in biogas production between blank and WHL. |
Blank vs. BP | −32.17825 | 0.0000 | There is a significant statistical difference in biogas production between blank and BP. |
Cellulose vs. WHL | 30.63895 | 0.0000 | There is a significant statistical difference in biogas production between cellulose and WHL. |
Cellulose vs. WHS | 27.52578 | 0.0000 | There is a significant statistical difference in biogas production between cellulose and WHS. |
Cellulose vs. BP | −16.02233 | 0.0000 | There is a significant statistical difference in biogas production between cellulose and BP. |
BP vs. WHL | 14.61661 | 0.0000 | There is a significant statistical difference in biogas production between BP and WHL. |
BP vs. WHS | 11.50345 | 0.0000 | There is a significant statistical difference in biogas production between BP and WHS. |
WHL vs. WHS | −3.113163 | 0.0093 | There is a significant statistical difference in biogas production between WHL and WHS, but it is less significant compared to other pairs. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gbiete, D.; Sprafke, J.; Kongnine, D.M.; Narra, S.; Kpelou, P.; Mouzou, E.; Agboka, K. Potential for Biogas Production from Water Hyacinth and Banana Peels: A Case Study of Substrates Harvested from Lomé, Togo. Fuels 2024, 5, 494-507. https://doi.org/10.3390/fuels5030027
Gbiete D, Sprafke J, Kongnine DM, Narra S, Kpelou P, Mouzou E, Agboka K. Potential for Biogas Production from Water Hyacinth and Banana Peels: A Case Study of Substrates Harvested from Lomé, Togo. Fuels. 2024; 5(3):494-507. https://doi.org/10.3390/fuels5030027
Chicago/Turabian StyleGbiete, Djangbadjoa, Jan Sprafke, Damgou Mani Kongnine, Satyanarayana Narra, Pali Kpelou, Essowè Mouzou, and Komi Agboka. 2024. "Potential for Biogas Production from Water Hyacinth and Banana Peels: A Case Study of Substrates Harvested from Lomé, Togo" Fuels 5, no. 3: 494-507. https://doi.org/10.3390/fuels5030027
APA StyleGbiete, D., Sprafke, J., Kongnine, D. M., Narra, S., Kpelou, P., Mouzou, E., & Agboka, K. (2024). Potential for Biogas Production from Water Hyacinth and Banana Peels: A Case Study of Substrates Harvested from Lomé, Togo. Fuels, 5(3), 494-507. https://doi.org/10.3390/fuels5030027