Advancements in the Application of CO2 Capture and Utilization Technologies—A Comprehensive Review
Abstract
:1. Introduction
2. Available Options for CO2 Capture: Analyzing the Challenges and Opportunities
2.1. CO2 Capture Technologies: Absorption
2.2. CO2 Capture Technologies: Membrane Separation Processes
2.3. CO2 Capture Technologies: Adsorption
2.4. CO2 Capture Technologies: Chemical Looping
2.5. CO2 Capture Technologies: Direct Capture from the Air
2.6. CO2 Capture Technologies: Hybrid Processes
2.7. Overall Comparison of CO2 Capture Technologies: Advantages and Disadvantages
3. Evaluating the Challenges and Opportunities Encountered in Processes of Utilizing CO2
3.1. Utilization of CO2 for Enhanced Oil Recovery
3.1.1. CO2-Enhanced Oil Recovery (CO2-EOR)
3.1.2. CO2-Enhanced Gas Recovery (CO2-EGR)
3.1.3. CO2-Enhanced Water/Brine Recovery (CO2-EWR)
3.2. CO2 Utilization: Conversion of CO2 into Fuels and Petrochemicals
3.2.1. CO2 Utilization: Conversion of CO2 into Fuels
3.2.2. CO2 Utilization: Conversion of CO2 into Petrochemicals
3.3. Mineralization of CO2
3.4. Desalination and Water Production
3.5. Challenges and Opportunities in the Utilization of CO2
3.5.1. Challenges
- ➢
- Affordability: The widespread adoption of technologies of CO2 utilization depends on their affordability. The economic feasibility of these innovations will be crucial in determining their acceptance and integration into existing industrial processes.
- ➢
- Efficiency concerns: The current challenges evolve around the efficiency of technologies of CO2 utilization. Researchers are actively working to tackle issues related to the high costs and low efficiency, aiming to improve the overall performance and competitiveness of these processes.
- ➢
- Limited utilization: Despite CO2 being captured from flue gas streams, its utilization in energy production and the synthesis of materials remains relatively low. The primary barriers to broader adoption are the expected high costs and the efficiency limitations of the existing technologies.
3.5.2. Opportunities
- ➢
- Diverse applications: The potential for using CO2 in various sectors is significant. This provides a versatile way to meet energy needs sustainably. Shifting this perspective opens new applications that go beyond traditional carbon capture and storage methods.
- ➢
- Emerging technologies: Continual advancements in CO2 utilization technologies, including the innovative processes mentioned earlier, indicate a transformative phase. These new technologies hold the promise of producing petrochemicals and fuels from captured CO2, representing a major shift in the use of greenhouse gases.
- ➢
- Economic momentum: The economic aspects of utilizing CO2 are becoming a focal point in research. The potential for economic benefits, such as the production of valuable materials, is generating interest and investment in these technologies.
4. Evaluating the Synergy between the Processes of CO2 Capture and Its Utilization
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Keerthana, K.B.; Wu, S.W.; Wu, M.E.; Kokulnathan, T. The United States Energy Consumption and Carbon Dioxide Emissions: A Comprehensive Forecast Using a Regression Model. Sustainability 2023, 15, 7932. [Google Scholar] [CrossRef]
- Schwarz-Herion, O. The impact of the climate change discussion on society, science, culture, and politics: From the Limits to Growth via the Paris agreement to a binding global policy. In The Impact of Climate Change on Our Life: The Questions of Sustainability; Springer: Singapore, 2018; pp. 1–32. [Google Scholar] [CrossRef]
- Markewitz, P.; Kuckshinrichs, W.; Leitner, W.; Linssen, J.; Zapp, P.; Bongartz, R.; Schreiber, A.; Muller, T.E. Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ. Sci. 2012, 5, 7281–7305. [Google Scholar] [CrossRef]
- Boot-Handford, M.E.; Abanades, J.C.; Anthony, E.J.; Blunt, M.J.; Brandani, S.; Mac Dowell, N.; Fernandez, J.R.; Ferrari, M.-C.; Gross, R.; Hallett, J.P.; et al. Carbon capture and storage update. Energy Environ. Sci. 2013, 7, 130–189. [Google Scholar] [CrossRef]
- Rubin, E.S.; Davison, J.E.; Herzog, H.J. The cost of CO2 capture and storage. Int. J. Greenh. Gas Control 2015, 40, 378–400. [Google Scholar] [CrossRef]
- Liotta, L.F.; Wu, H. CO2 Capture, Utilization and Storage: Catalysts Design. Catalysts 2024, 14, 80. [Google Scholar] [CrossRef]
- Karayil, A.; Elseragy, A.; Aliyu, A.M. An Assessment of CO2 Capture Technologies towards Global Carbon Net Neutrality. Energies 2024, 17, 1460. [Google Scholar] [CrossRef]
- Ahmed, S.; Irshad, M.; Yoon, W.; Karanwal, N.; Sugiarto, J.R.; Khan, M.K.; Kim, S.K.; Kim, J. Evaluation of MgO as a promoter for the hydrogenation of CO2 to long-chain hydrocarbons over Fe-based catalysts. Appl. Catal. B 2023, 338, 123052. [Google Scholar] [CrossRef]
- Khan, M.K.; Butolia, P.; Jo, H.; Irshad, M.; Han, D.; Nam, K.-W.; Kim, J. Selective Conversion of Carbon Dioxide into Liquid Hydrocarbons and Long-Chain α-Olefins over Fe-Amorphous AlOx Bifunctional Catalysts. ACS Catal. 2020, 10, 10325–10338. [Google Scholar] [CrossRef]
- Ahmed, S.; Bibi, S.S.; Irshad, M.; Asif, M.; Khan, M.K.; Kim, J. Synthesis of Long-chain Paraffins over Bimetallic Na–Fe0.9Mg0.1Ox by Direct CO2 Hydrogenation. Top. Catal. 2024, 67, 363–376. [Google Scholar] [CrossRef]
- Ali, M.; Koo, H.M.; Kasipandi, S.; Han, G.Y.; Bae, J.W. Direct synthesis of liquid fuels and aromatics from syngas over mesoporous FeZrOx catalyst mixed with Mo/ferrierite. Fuel 2020, 264, 116851. [Google Scholar] [CrossRef]
- Kondratenko, E.V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G.O.; Pérez-Ramírez, J. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 2013, 6, 3112–3135. [Google Scholar] [CrossRef]
- Zafar, F.; Zhao, R.; Ali, M.; Min Park, Y.; Roh, H.S.; Gao, X.; Tian, J.; Bae, J.W. Unprecedented contributions of In2O3 promoter on ordered mesoporous Cu/Al2O3 for CO2 hydrogenation to oxygenates. Chem. Eng. J. 2022, 439, 135649. [Google Scholar] [CrossRef]
- Qiu, H.H.; Liu, L.G. A Study on the Evolution of Carbon Capture and Storage Technology Based on Knowledge Mapping. Energies 2018, 11, 1103. [Google Scholar] [CrossRef]
- Kamkeng, A.D.N.; Wang, M.; Hu, J.; Du, W.; Qian, F. Transformation technologies for CO2 utilisation: Current status, challenges and future prospects. Chem. Eng. J. 2021, 409, 128138. [Google Scholar] [CrossRef]
- Eyitayo, S.I.; Okere, C.J.; Hussain, A.; Gamadi, T.; Watson, M.C. Synergistic sustainability: Future potential of integrating produced water and CO2 for enhanced carbon capture, utilization, and storage (CCUS). J. Environ. Manag. 2024, 351, 119713. [Google Scholar] [CrossRef]
- Miller, D.C.; Litynski, J.T.; Brickett, L.A.; Morreale, B.D. Toward transformational carbon capture systems. AIChE J. 2016, 62, 2–10. [Google Scholar] [CrossRef]
- Zhao, Y.; Ho, W.S.W. CO2-selective membranes containing sterically hindered amines for CO2/H2 separation. Ind. Eng. Chem. Res. 2013, 52, 8774–8782. [Google Scholar] [CrossRef]
- Songolzadeh, M.; Soleimani, M.; Takht Ravanchi, M.; Songolzadeh, R. Carbon dioxide separation from flue gases: A technological review emphasizing reduction in greenhouse gas emissions. Sci. World J. 2014, 2014, 828131. [Google Scholar] [CrossRef]
- Abotalib, M.; Zhao, F.; Clarens, A. Deployment of a Geographical Information System Life Cycle Assessment Integrated Framework for Exploring the Opportunities and Challenges of Enhanced Oil Recovery Using Industrial CO2 Supply in the United States. ACS Sustain. Chem. Eng. 2016, 4, 4743–4751. [Google Scholar] [CrossRef]
- Ahn, Y.; Bae, S.J.; Kim, M.; Cho, S.K.; Baik, S.; Lee, J.I.; Cha, J.E. Review of supercritical CO2 power cycle technology and current status of research and development. Nucl. Eng. Technol. 2015, 47, 647–661. [Google Scholar] [CrossRef]
- Ali, M.; Jha, N.K.; Pal, N.; Keshavarz, A.; Hoteit, H.; Sarmadivaleh, M. Recent advances in carbon dioxide geological storage, experimental procedures, influencing parameters, and future outlook. Earth Sci. Rev. 2022, 225, 103895. [Google Scholar] [CrossRef]
- Boundary Dam Integrated Carbon Capture and Storage Demonstration Project. 2015. Available online: http://www.saskpower.com/our-power-future/carbon-capture-and-storage/ (accessed on 25 November 2016).
- Arstad, B.; Fjellvåg, H.; Kongshaug, K.O.; Swang, O.; Blom, R. Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide. Adsorption 2008, 14, 755–762. [Google Scholar] [CrossRef]
- Builes, S.; López-Aranguren, P.; Fraile, J.; Vega, L.F.; Domingo, C. Analysis of CO2 adsorption in amine-functionalized porous silicas by molecular simulations. Energy Fuels 2015, 29, 3855–3862. [Google Scholar] [CrossRef]
- Kong, Y.; Shen, X.; Fan, M.; Yang, M.; Cui, S. Dynamic capture of low-concentration CO2 on amine hybrid silsesquioxane aerogel. Chem. Eng. J. 2016, 283, 1059–1068. [Google Scholar] [CrossRef]
- Goeppert, A.; Czaun, M.; Surya Prakash, G.K.; Olah, G.A. Air as the renewable carbon source of the future: An overview of CO2 capture from the atmosphere. Energy Environ. Sci. 2012, 5, 7833–7853. [Google Scholar] [CrossRef]
- Bates, E.D.; Mayton, R.D.; Ntai, I.; Davis, J.H. CO2 capture by a task-specific ionic liquid. J. Am. Chem. Soc. 2002, 124, 926–927. [Google Scholar] [CrossRef]
- Cadena, C.; Anthony, J.L.; Shah, J.K.; Morrow, T.I.; Brennecke, J.F.; Maginn, E.J. Why is CO2 so Soluble in Imidazolium-Based Ionic Liquids? J. Am. Chem. Soc. 2004, 126, 5300–5308. [Google Scholar] [CrossRef]
- Corvo, M.C.; Sardinha, J.; Casimiro, T.; Marin, G.; Seferin, M.; Einloft, S.; Menezes, S.C.; Dupont, J.; Cabrita, E.J. A Rational Approach to CO2 Capture by Imidazolium Ionic Liquids: Tuning CO2 Solubility by Cation Alkyl Branching. ChemSusChem 2015, 8, 1935–1946. [Google Scholar] [CrossRef] [PubMed]
- Rochelle, G.T. Amine Scrubbing for CO2 Capture. Science (1979) 2009, 325, 1652–1654. [Google Scholar] [CrossRef]
- Lively, R.P.; Realff, M.J. On thermodynamic separation efficiency: Adsorption processes. AIChE J. 2016, 62, 3699–3705. [Google Scholar] [CrossRef]
- Soo, X.Y.D.; Lee, J.J.C.; Wu, W.Y.; Tao, L.; Wang, C.; Zhu, Q.; Bu, J. Advancements in CO2 capture by absorption and adsorption: A comprehensive review. J. CO2 Util. 2024, 81, 102727. [Google Scholar] [CrossRef]
- Godin, J.; Liu, W.; Ren, S.; Xu, C.C. Advances in recovery and utilization of carbon dioxide: A brief review. J. Environ. Chem. Eng. 2021, 9, 105644. [Google Scholar] [CrossRef]
- Han, S.; Huang, Y.; Watanabe, T.; Dai, Y.; Walton, K.S.; Nair, S.; Scholl, D.S.; Carson, M.J. High-throughput screening of metal-organic frameworks for CO2 separation. ACS Comb. Sci. 2012, 14, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Eić, M. Commercial adsorbents as benchmark materials for separation of carbon dioxide and nitrogen by vacuum swing adsorption process. Sep. Purif. Technol. 2013, 103, 203–215. [Google Scholar] [CrossRef]
- Japip, S.; Wang, H.; Xiao, Y.; Chung, T.S. Highly permeable zeolitic imidazolate framework (ZIF)-71 nano-particles enhanced polyimide membranes for gas separation. J. Memb. Sci. 2014, 467, 162–174. [Google Scholar] [CrossRef]
- Merkel, T.C.; Lin, H.; Wei, X.; Baker, R. Power plant post-combustion carbon dioxide capture: An opportunity for membranes. J. Memb. Sci. 2010, 359, 126–139. [Google Scholar] [CrossRef]
- Koros, W.J. Evolving Beyond the Thermal Age of Separation Processes: Membranes Can Lead the Way. AIChE J. 2004, 50, 2326–2334. [Google Scholar] [CrossRef]
- Kosuri, M.R.; Koros, W.J. Asymmetric hollow fiber membranes for separation of CO2 from hydrocarbons and fluorocarbons at high-pressure conditions relevant to C 2F4 polymerization. Ind. Eng. Chem. Res. 2009, 48, 10577–10583. [Google Scholar] [CrossRef]
- Rownaghi, A.A.; Kant, A.; Li, X.; Thakkar, H.; Hajari, A.; He, Y.; Brennan, P.J.; Hosseini, H.; Koros, W.J.; Rezaei, F. Aminosilane-Grafted Zirconia–Titiania–Silica Nanoparticles/Torlon Hollow Fiber Composites for CO2 Capture. ChemSusChem 2016, 9, 1166–1177. [Google Scholar] [CrossRef]
- Favre, E. Carbon dioxide recovery from post-combustion processes: Can gas permeation membranes compete with absorption? J. Memb. Sci. 2007, 294, 50–59. [Google Scholar] [CrossRef]
- Kim, T.J.; Vrålstad, H.; Sandru, M.; Hägg, M.B. Separation performance of PVAm composite membrane for CO2 capture at various pH levels. J. Memb. Sci. 2013, 428, 218–224. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, F.; Zhang, Y.; Miao, C.; Hua, W.; Yue, Y.; Gao, Z. Oxidative dehydrogenation of ethane with CO2 over Cr supported on submicron ZSM-5 zeolite. Chin. J. Catal. 2015, 36, 1242–1248. [Google Scholar] [CrossRef]
- Bae, T.H.; Long, J.R. CO2/N2 separations with mixed-matrix membranes containing Mg2(dobdc) nanocrystals. Energy Environ. Sci. 2013, 6, 3565–3569. [Google Scholar] [CrossRef]
- Fan, M.; Abdullah, A.Z.; Bhatia, S. Catalytic Technology for Carbon Dioxide Reforming of Methane to Synthesis Gas. ChemCatChem 2009, 1, 192–208. [Google Scholar] [CrossRef]
- Tanh Jeazet, H.B.; Staudt, C.; Janiak, C. Metal–organic frameworks in mixed- matrix membranes for gas separation. Dalton Trans. 2012, 41, 14003–14027. [Google Scholar] [CrossRef] [PubMed]
- Labreche, Y.; Lively, R.P.; Rezaei, F.; Chen, G.; Jones, C.W.; Koros, W.J. Post-spinning infusion of poly(ethyleneimine) into polymer/silica hollow fiber sorbents for carbon dioxide capture. Chem. Eng. J. 2013, 221, 166–175. [Google Scholar] [CrossRef]
- Chue, K.T.; Kim, J.N.; Yoo, Y.J.; Cho, S.H.; Yang, R.T. Comparison of Activated Carbon and Zeolite 13X for CO2 Recovery from Flue Gas by Pressure Swing Adsorption. Ind. Eng. Chem. Res. 1995, 34, 591–598. [Google Scholar] [CrossRef]
- Liu, H.; Guo, P.; Regueira, T.; Wang, Z.; Du, J.; Chen, G. Irreversible Change of the Pore Structure of ZIF-8 in Carbon Dioxide Capture with Water Coexistence. J. Phys. Chem. C 2016, 120, 13287–13294. [Google Scholar] [CrossRef]
- Patel, H.A.; Karadas, F.; Canlier, A.; Park, J.; Deniz, E.; Jung, Y.; Atilhan, M.; Yavuz, C.T. High capacity carbon dioxide adsorption by inexpensive covalent organic polymers. J. Mater. Chem. 2012, 22, 8431–8437. [Google Scholar] [CrossRef]
- Phan, A.; Doonan, C.J.; Uribe-Romo, F.J.; Knobler, C.B.; Okeeffe, M.; Yaghi, O.M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 2010, 43, 58–67. [Google Scholar] [CrossRef]
- Reich, T.E.; Behera, S.; Jackson, K.T.; Jena, P.; El-Kaderi, H.M. Highly selective CO2/CH4 gas uptake by a halogen-decorated borazine-linked polymer. J. Mater. Chem. 2012, 22, 13524–13528. [Google Scholar] [CrossRef]
- Choi, S.; Drese, J.H.; Jones, C.W. Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources. ChemSusChem 2009, 2, 796–854. [Google Scholar] [CrossRef]
- Hauchhum, L.; Mahanta, P. Carbon dioxide adsorption on zeolites and activated carbon by pressure swing adsorption in a fixed bed. Int. J. Energy Environ. Eng. 2014, 5, 349–356. [Google Scholar] [CrossRef]
- Ruthven, D.M. Principles of Adsorption and Adsorption Processes. Available online: https://books.google.com/books?hl=en&lr=&id=u7wq21njR3UC&oi=fnd&pg=PR17&dq=Principles+of+adsorption+and+adsorption+processes.&ots=wdStQpDetX&sig=bKK6mVjzEQ5ZmJQYCcW7I9OEr5I#v=onepage&q=Principles%20of%20adsorption%20and%20adsorption%20processes.&f=false (accessed on 29 January 2024).
- Gao, X.-J.; Zheng, G. The difference in the CO2 adsorption capacities of different functionalized pillar-layered metal–organic frameworks (MOFs). Dalton Trans. 2021, 50, 9310–9316. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, F.; Webley, P. Structured adsorbents in gas separation processes. Sep. Purif. Technol. 2010, 70, 243–256. [Google Scholar] [CrossRef]
- Lively, R.P.; Chance, R.R.; Kelley, B.T.; Deckman, H.W.; Drese, J.H.; Jones, C.W.; Koros, W.J. Hollow fiber adsorbents for CO2 removal from flue gas. Ind. Eng. Chem. Res. 2009, 48, 7314–7324. [Google Scholar] [CrossRef]
- Lively, R.P.; Chance, R.R.; Koros, W.J. Enabling low-cost CO2 capture via heat integration. Ind. Eng. Chem. Res. 2010, 49, 7550–7562. [Google Scholar] [CrossRef]
- Rezaei, F.; Lively, R.P.; Labreche, Y.; Chen, G.; Fan, Y.; Koros, W.J.; Jones, C.W. Aminosilane-grafted polymer/silica hollow fiber adsorbents for CO2 capture from flue gas. ACS Appl. Mater. Interfaces 2013, 5, 3921–3931. [Google Scholar] [CrossRef] [PubMed]
- Kärger, J.; Ruthven, D.M. Self-diffusion and diffusive transport in zeolite crystals. Stud. Surf. Sci. Catal. 1997, 105, 1843–1850. [Google Scholar] [CrossRef]
- Hossain, M.M.; de Lasa, H.I. Chemical-looping combustion (CLC) for inherent CO2 separations—A review. Chem. Eng. Sci. 2008, 63, 4433–4451. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, H.; Jiao, C.; Wang, Q.; Lin, X. Review on Global CCUS Technology and Application. Mod. Chem. Ind. 2021, 41, 5–10. [Google Scholar] [CrossRef]
- Martínez, A.; Lara, Y.; Lisbona, P.; Romeo, L.M. Energy penalty reduction in the calcium looping cycle. Int. J. Greenh. Gas Control 2012, 7, 74–81. [Google Scholar] [CrossRef]
- Martínez, I.; Murillo, R.; Grasa, G.; Carlos Abanades, J. Integration of a Ca looping system for CO2 capture in existing power plants. AIChE J. 2011, 57, 2599–2607. [Google Scholar] [CrossRef]
- Romeo, L.M.; Usón, S.; Valero, A.; Escosa, J.M. Exergy analysis as a tool for the integration of very complex energy systems: The case of carbonation/calcination CO2 systems in existing coal power plants. Int. J. Greenh. Gas Control 2010, 4, 647–654. [Google Scholar] [CrossRef]
- Charitos, A.; Hawthorne, C.; Bidwe, A.R.; Sivalingam, S.; Schuster, A.; Spliethoff, H.; Scheffknecht, G. Parametric investigation of the calcium looping process for CO2 capture in a 10 kWth dual fluidized bed. Int. J. Greenh. Gas Control 2010, 4, 776–784. [Google Scholar] [CrossRef]
- Rodríguez, N.; Alonso, M.; Abanades, J.C. Experimental investigation of a circulating fluidized-bed reactor to capture CO2 with CaO. AIChE J. 2011, 57, 1356–1366. [Google Scholar] [CrossRef]
- Symonds, R.T.; Lu, D.Y.; Manovic, V.; Anthony, E.J. Pilot-scale study of CO2 capture by CaO-based sorbents in the presence of steam and SO2. Ind. Eng. Chem. Res. 2012, 51, 7177–7184. [Google Scholar] [CrossRef]
- Lackner, K.S.; Brennan, S.; Matter, J.M.; Park, A.-H.A.; Wright, A.; van der Zwaan, B. The urgency of the development of CO2 capture from ambient air. Proc. Natl. Acad. Sci. USA 2012, 109, 13156–13162. [Google Scholar] [CrossRef]
- Sanz-Pérez, E.S.; Murdock, C.R.; Didas, S.A.; Jones, C.W. Direct Capture of CO2 from Ambient Air. Chem. Rev. 2016, 116, 11840–11876. [Google Scholar] [CrossRef]
- Zhao, L.; Primabudi, E.; Stolten, D. Investigation of a Hybrid System for Post-Combustion Capture. Energy Procedia 2014, 63, 1756–1772. [Google Scholar] [CrossRef]
- Hasse, D.; Ma, J.; Kulkarni, S.; Terrien, P.; Tranier, J.P.; Sanders, E.; Chaubey, T.; Brumback, J. CO2 Capture by Cold Membrane Operation. Energy Procedia 2014, 63, 186–193. [Google Scholar] [CrossRef]
- Belaissaoui, B.; Le Moullec, Y.; Willson, D.; Favre, E. Hybrid membrane cryogenic process for post-combustion CO2 capture. J. Memb. Sci. 2012, 415–416, 424–434. [Google Scholar] [CrossRef]
- Esteves, I.A.A.C.; Mota, J.P.B. Simulation of a new hybrid membrane/pressure swing adsorption process for gas separation. Desalination 2002, 148, 275–280. [Google Scholar] [CrossRef]
- Scholz, M.; Frank, B.; Stockmeier, F.; Falß, S.; Wessling, M. Techno-economic analysis of hybrid processes for biogas upgrading. Ind. Eng. Chem. Res. 2013, 52, 16929–16938. [Google Scholar] [CrossRef]
- Song, C. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal. Today 2006, 115, 2–32. [Google Scholar] [CrossRef]
- Wurzbacher, J.A.; Gebald, C.; Steinfeld, A. Separation of CO2 from air by temperature-vacuum swing adsorption using diamine-functionalized silica gel. Energy Environ. Sci. 2011, 4, 3584–3592. [Google Scholar] [CrossRef]
- Aresta, M. Carbon Dioxide as Chemical Feedstock; Wiley: Weinheim, Germany, 2010; 394p. [Google Scholar]
- Aresta, M.; Dibenedetto, A. Utilisation of CO2 as a chemical feedstock: Opportunities and challenges. Dalton Trans. 2007, 2975–2992. [Google Scholar] [CrossRef]
- Aresta, M.; Dibenedetto, A.; Angelini, A. Catalysis for the valorization of exhaust carbon: From CO2 to chemicals, materials, and fuels. technological use of CO2. Chem. Rev. 2014, 114, 1709–1742. [Google Scholar] [CrossRef]
- Tunio, S.Q.; Tunio, A.H.; Ghirano, N.A.; Mohamed, Z.; Adawy, E. Comparison of Different Enhanced Oil Recovery Techniques for Better Oil Productivity. Int. J. Appl. Sci. Technol. 2011, 1, 143–153. [Google Scholar]
- Edouard, M.N.; Okere, C.J.; Ejike, C.; Dong, P.; Suliman, M.A.M. Comparative numerical study on the co-optimization of CO2 storage and utilization in EOR, EGR, and EWR: Implications for CCUS project development. Appl. Energy 2023, 347, 121448. [Google Scholar] [CrossRef]
- Safi, R.; Agarwal, R.K.; Banerjee, S. Numerical simulation and optimization of CO2 utilization for enhanced oil recovery from depleted reservoirs. Chem. Eng. Sci. 2016, 144, 30–38. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Nwabueze, Q.A. Production and Economic Analysis of Enhanced Oil Recovery (EOR) by Water Flooding: A Case Study of Reservoir OD-48 in The Niger Delta Article Open Access Production and Economic Analysis of Enhanced Oil Recovery (EOR) by Wate r Flooding: A Case Study of Reservoir OD-48 in The Niger Delta. Pet. Coal 2020, 62, 103–113. [Google Scholar]
- Bao, W.; Li, H.; Zhang, Y. Experimental investigation of enhanced carbonation by solvent extraction for indirect CO2 mineral sequestration. Greenh. Gases: Sci. Technol. 2014, 4, 785–799. [Google Scholar] [CrossRef]
- Azzolina, N.A.; Nakles, D.V.; Gorecki, C.D.; Peck, W.D.; Ayash, S.C.; Melzer, L.S.; Chatterjee, S. CO2 storage associated with CO2 enhanced oil recovery: A statistical analysis of historical operations. Int. J. Greenh. Gas Control 2015, 37, 384–397. [Google Scholar] [CrossRef]
- Perera, M.S.A.; Gamage, R.P.; Rathnaweera, T.D.; Ranathunga, A.S.; Koay, A.; Choi, X. A Review of CO2-Enhanced Oil Recovery with a Simulated Sensitivity Analysis. Energies 2016, 9, 481. [Google Scholar] [CrossRef]
- Gozalpour, F.; Ren, S.R.; Tohidi, B. CO2 Eor and Storage in Oil Reservoir. Oil Gas Sci. Technol. 2005, 60, 537–546. [Google Scholar] [CrossRef]
- Cho, J.; Kim, T.H.; Lee, K.S. Modeling of CO2 EOR Process Combined with Intermediate Hydrocarbon Solvents for Higher Recovery Efficiency. In Proceedings of the Society of Petroleum Engineers—SPE EOR Conference at Oil and Gas West Asia, OGWA, Muscat, Oman, 21–23 March 2016. [Google Scholar] [CrossRef]
- CO2 Trapping Mechanisms Assessment Using Numerical and Analytical Methods-ProQuest. Available online: https://www.proquest.com/docview/2479067252?pq-origsite=gscholar&fromopenview=true&sourcetype=Dissertations%20&%20Theses (accessed on 24 July 2024).
- Celia, M.A.; Bachu, S.; Nordbotten, J.M.; Bandilla, K.W. Status of CO2 storage in deep saline aquifers with emphasis on modeling approaches and practical simulations. Water Resour. Res. 2015, 51, 6846–6892. [Google Scholar] [CrossRef]
- Panda, M.; Nottingham, D.; Lenig, D. Systematic Surveillance Techniques for a Large Miscible WAG Flood. SPE Reserv. Eval. Eng. 2011, 14, 299–309. [Google Scholar] [CrossRef]
- Al Hajeri, S.; Negahban, S.; Al-Yafei, G.; Al Basry, A. Design and Implementation of the First CO2-EOR Pilot in Abu Dhabi, UAE. In Proceedings of the SPE EOR Conference at Oil and Gas West Asia 2010, OGWA—EOR Challenges, Experiences and Opportunities in the Middle East, Muscat, Oman, 31 March–2 April 2010; pp. 587–595. [Google Scholar] [CrossRef]
- Ampomah, W.; Balch, R.S.; Grigg, R.B.; Will, R.; Dai, Z.; White, M.D. Farnsworth Field CO2-EOR Project: Performance Case History. In Proceedings of the SPE—DOE Improved Oil Recovery Symposium, Tulsa, OK, USA, 11–13 April 2016. [Google Scholar] [CrossRef]
- Pizarro, J.O.D.S.A.; Branco, C.C.M. Challenges in Implementing an EOR Project in the Pre-Salt Province in Deep Offshore Brasil. In Proceedings of the Society of Petroleum Engineers—SPE EOR Conference at Oil and Gas West Asia 2012, OGWA—EOR: Building Towards Sustainable Growth, Muscat, Oman, 16–18 April 2012; Volume 2, pp. 954–966. [Google Scholar] [CrossRef]
- Klimkowski, Ł.; Nagy, S.; Papiernik, B.; Orlic, B.; Kempka, T. Numerical Simulations of Enhanced Gas Recovery at the Załęcze Gas Field in Poland Confirm High CO2 Storage Capacity and Mechanical Integrity. Oil Gas Sci. Technol. Rev. D’ifp Energ. Nouv. 2015, 70, 655–680. [Google Scholar] [CrossRef]
- Ren, B.; Duncan, I.J. Reservoir simulation of carbon storage associated with CO2 EOR in residual oil zones, San Andres formation of West Texas, Permian Basin, USA. Energy 2019, 167, 391–401. [Google Scholar] [CrossRef]
- Allen, M.J.; Faulkner, D.R.; Worden, R.H.; Rice-Birchall, E.; Katirtsidis, N.; Utley, J.E.P. Geomechanical and petrographic assessment of a CO2 storage site: Application to the Acorn CO2 Storage Site, offshore United Kingdom. Int. J. Greenh. Gas Control 2020, 94, 102923. [Google Scholar] [CrossRef]
- Iglauer, S. CO2-Water-Rock Wettability: Variability, Influencing Factors, and Implications for CO2 Geostorage. Acc. Chem. Res. 2017, 50, 1134–1142. [Google Scholar] [CrossRef] [PubMed]
- Saira; Janna, F.; Le-Hussain, F. Effectiveness of modified CO2 injection at improving oil recovery and CO2 storage—Review and simulations. Energy Rep. 2020, 6, 1922–1941. [Google Scholar] [CrossRef]
- Ajayi, T.; Gomes, J.S.; Bera, A. A review of CO2 storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches. Pet. Sci. 2019, 16, 1028–1063. [Google Scholar] [CrossRef]
- Verma, Y.; Vishal, V.; Ranjith, P.G. Sensitivity Analysis of Geomechanical Constraints in CO2 Storage to Screen Potential Sites in Deep Saline Aquifers. Front. Clim. 2021, 3, 720959. [Google Scholar] [CrossRef]
- Ezekiel, J.; Ebigbo, A.; Adams, B.M.; Saar, M.O. Combining natural gas recovery and CO2-based geothermal energy extraction for electric power generation. Appl. Energy 2020, 269, 115012. [Google Scholar] [CrossRef]
- Driverless Vehicles: Opportunity for Further Greenhouse Gas Emission Reductions on JSTOR. Available online: https://www.jstor.org/stable/26353861 (accessed on 29 January 2024).
- Okere, C.J.; Sheng, J.J. Review on clean hydrogen generation from petroleum reservoirs: Fundamentals, mechanisms, and field applications. Int. J. Hydrog. Energy 2023, 48, 38188–38222. [Google Scholar] [CrossRef]
- Graciani, J.; Mudiyanselage, K.; Xu, F.; Baber, A.E.; Evans, J.; Senanayake, S.D.; Stacchiola, D.J.; Liu, P.; Hrbek, J.; Fernandez Sanz, J.; et al. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science (1979) 2014, 345, 546–550. [Google Scholar] [CrossRef]
- Laurenczy, G.; Laurenczy, G. Hydrogen Storage and Delivery: The Carbon Dioxide—Formic Acid Couple. Chimia 2011, 65, 663. [Google Scholar] [CrossRef]
- Matsubu, J.C.; Yang, V.N.; Christopher, P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J. Am. Chem. Soc. 2015, 137, 3076–3084. [Google Scholar] [CrossRef]
- Hu, B.; Guild, C.; Suib, S.L. Thermal, electrochemical, and photochemical conversion of CO2 to fuels and value-added products. J. CO2 Util. 2013, 1, 18–27. [Google Scholar] [CrossRef]
- Bansode, A.; Urakawa, A. Towards full one-pass conversion of carbon dioxide to methanol and methanol-derived products. J. Catal. 2014, 309, 66–70. [Google Scholar] [CrossRef]
- Porosoff, M.D.; Yan, B.; Chen, J.G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities. Energy Environ. Sci. 2016, 9, 62–73. [Google Scholar] [CrossRef]
- Fan, S.; Wang, H.; Wang, S.; Dong, M.; Fan, W. Recent progress in the deactivation mechanism of zeolite catalysts in methanol to olefins. Sci. China Chem. 2024, 1–10. [Google Scholar] [CrossRef]
- Müller, S.; Liu, Y.; Vishnuvarthan, M.; Sun, X.; Van Veen, A.C.; Haller, G.L.; Sanchez-Sanchez, M.; Lercher, J.A. Coke formation and deactivation pathways on H-ZSM-5 in the conversion of methanol to olefins. J. Catal. 2015, 325, 48–59. [Google Scholar] [CrossRef]
- Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power. Available online: https://books.google.com/books?hl=en&lr=&id=AsOKDwAAQBAJ&oi=fnd&pg=PR15&dq=Thermochemical+processing+of+biomass:+conversion+into+fuels,+chemicals+and+power&ots=bGv8DAbA47&sig=szpfm4vOLxIXnOrCzO7iIeMwJtA#v=onepage&q=Thermochemical%20processing%20of%20biomass%3A%20conversion%20into%20fuels%2C%20chemicals%20and%20power&f=false (accessed on 29 January 2024).
- Gangadharan, P.; Kanchi, K.C.; Lou, H.H. Evaluation of the economic and environmental impact of combining dry reforming with steam reforming of methane. Chem. Eng. Res. Des. 2012, 90, 1956–1968. [Google Scholar] [CrossRef]
- Rodriguez-Santiago, V. Utilization of carbon dioxide from coalfired power plant for the production of value-added products. In Proceedings of the 3rd Annual International Pittsburgh Coal Conference, PCC-Coal-Energy, Environment and Sustainable Development, Pittsburgh, PA, USA, 25–28 September 2006. [Google Scholar]
- de Queiroz, F.; Araújo, Q.; de Medeiros, J.L.; Maria, R. CO2 Utilization: A Process Systems Engineering Vision. In CO2 Sequestration and Valorization; InTech: London, UK, 2014. [Google Scholar] [CrossRef]
- Ozkan, M.; Nayak, S.P.; Ruiz, A.D.; Jiang, W. Current status and pillars of direct air capture technologies. IScience 2022, 25, 103990. [Google Scholar] [CrossRef]
- Kahle, L.C.S.; Roussière, T.; Maier, L.; Herrera Delgado, K.; Wasserschaff, G.; Schunk, S.A.; Deutschmann, O. Methane dry reforming at high temperature and elevated pressure: Impact of gas-phase reactions. Ind. Eng. Chem. Res. 2013, 52, 11920–11930. [Google Scholar] [CrossRef]
- Ross, J.R.H. Natural gas reforming and CO2 mitigation. Catal. Today 2005, 100, 151–158. [Google Scholar] [CrossRef]
- Estes, D.P.; Copéret, C. The Role of Proton Transfer in Heterogeneous Transformations of Hydrocarbons. Chimia 2015, 69, 321. [Google Scholar] [CrossRef]
- Koirala, R.; Buechel, R.; Krumeich, F.; Pratsinis, S.E.; Baiker, A. Oxidative dehydrogenation of ethane with CO2 over flame-made Ga-loaded TiO2. ACS Catal. 2015, 5, 690–702. [Google Scholar] [CrossRef]
- Urlan, F.; Marcu, I.C.; Sandulescu, I. Oxidative dehydrogenation of n-butane over titanium pyrophosphate catalysts in the presence of carbon dioxide. Catal. Commun. 2008, 9, 2403–2406. [Google Scholar] [CrossRef]
- Müller, K.; Baumgärtner, A.; Mokrushina, L.; Arlt, W. Increasing the Equilibrium Yield of Oxidative Dehydrogenation with CO2 by Secondary Reactions. Chem. Eng. Technol. 2014, 37, 1261–1264. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, Z.H. Catalytic conversion of alkanes to olefins by carbon dioxide oxidative dehydrogenation—A review. Energy Fuels 2004, 18, 1126–1139. [Google Scholar] [CrossRef]
- Ansari, M.B.; Park, S.E. Carbon dioxide utilization as a soft oxidant and promoter in catalysis. Energy Environ. Sci. 2012, 5, 9419–9437. [Google Scholar] [CrossRef]
- MacDowell, N.; Florin, N.; Buchard, A.; Hallett, J.; Galindo, A.; Jackson, G.; Adjiman, C.S.; Williams, C.K.; Shah, N.; Fennell, P. An overview of CO2 capture technologies. Energy Environ. Sci. 2010, 3, 1645–1669. [Google Scholar] [CrossRef]
- Carbon Management: Implications for R&D in the Chemical Sciences and Technology—National Research Council, Division on Earth and Life Studies, Board on Chemical Sciences and Technology, Chemical Sciences Roundtable. Available online: https://books.google.com/books?hl=en&lr=&id=BQ1Lt4yEKskC&oi=fnd&pg=PT13&dq=Carbon+Management:+Implications+for+R+%26+D+in+the+Chemical+Sciences+and+Technology+(A+Workshop+Report+to+the+Chemical+Sciences+Roundtable).&ots=MGzYopqM10&sig=VvEZ00ModX1zruDYWTQqN-PAvUs#v=onepage&q=Carbon%20Management%3A%20Implications%20for%20R%20%26%20D%20in%20the%20Chemical%20Sciences%20and%20Technology%20(A%20Workshop%20Report%20to%20the%20Chemical%20Sciences%20Roundtable).&f=false (accessed on 29 January 2024).
- Carbon Capture and Utilisation in the Green Economy. Available online: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C44&q=Carbon+Capture+and+Utilisation+in+the+green+economy&btnG= (accessed on 30 January 2024).
- Angunn, E.; Nada, A.; Gaëlle, B.C. Evaluation of Carbon Dioxide Utilisation Concepts: A Quick and Complete Methodology. Energy Procedia 2014, 63, 8010–8016. [Google Scholar] [CrossRef]
- Meylan, F.D.; Moreau, V.; Erkman, S. CO2 utilization in the perspective of industrial ecology, an overview. J. CO2 Util. 2015, 12, 101–108. [Google Scholar] [CrossRef]
- Cuéllar-Franca, R.M.; Azapagic, A. Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts. J. CO2 Util. 2015, 9, 82–102. [Google Scholar] [CrossRef]
- Sanna, A.; Uibu, M.; Caramanna, G.; Kuusik, R.; Maroto-Valer, M.M. A review of mineral carbonation technologies to sequester CO2. Chem. Soc. Rev. 2014, 43, 8049–8080. [Google Scholar] [CrossRef]
- Pan, S.Y.; Chiang, A.; Chang, E.E.; Lin, Y.P.; Kim, H.; Chiang, P.C. An Innovative Approach to Integrated Carbon Mineralization and Waste Utilization: A Review. Aerosol Air Qual. Res. 2015, 15, 1072–1091. [Google Scholar] [CrossRef]
- Special Report on Carbon Dioxide Capture and Storage. Available online: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C44&q=Special+report+on+carbon+dioxide+capture+and+storage&btnG= (accessed on 29 January 2024).
- Sanna, A.; Hall, M.R.; Maroto-Valer, M. Post-processing pathways in carbon capture and storage by mineral carbonation (CCSM) towards the introduction of carbon neutral materials. Energy Environ. Sci. 2012, 5, 7781–7796. [Google Scholar] [CrossRef]
- Huijgen, W.J.J. Carbon Dioxide Sequestration by Mineral Carbonation. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2007. [Google Scholar]
- Matter, J.M.; Stute, M.; Snæbjörnsdottir, S.; Oelkers, E.H.; Gislason, S.R.; Aradottir, E.S.; Sigfusson, B.; Gunnarsson, I.; Sigurdardottir, H.; Gunnlaugsson, E.; et al. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science (1979) 2016, 352, 1312–1314. [Google Scholar] [CrossRef] [PubMed]
- Bijl, D.L.; Bogaart, P.W.; Kram, T.; de Vries, B.J.M.; van Vuuren, D.P. Long-term water demand for electricity, industry and households. Environ. Sci. Policy 2016, 55, 75–86. [Google Scholar] [CrossRef]
- McCutcheon, J.L.; McGinnis, R.L.; Elimelech, M. Ammonia-Carbon Dioxide Forward Osmosis Desalination; Water Conditioning & Purification: 2006. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://elimelechlab.yale.edu/sites/default/files/files/wcp_oct2006.pdf&ved=2ahUKEwiwioyZv66IAxUl6ckDHfVUBFEQFnoECA0QAQ&usg=AOvVaw3BXR0RuR4mWx2avD5qObIM (accessed on 24 June 2024).
- Max, M.D.; Sheps, K.; Tatro, S.R.; Brazel, L.; Osegovic, J.P. Seawater Desalination as A Beneficial Factor of CO2 Sequestration. In Proceedings of the International Conference on Gas Hydrates (ICGH), Vancouver, BC, Canada, 6–10 July 2008. [Google Scholar] [CrossRef]
- West, O.R.; Tsouris, C.; Liang, L. Method and Apparatus for Efficient Injection of CO2 in Oceans. U.S. Patent US6598407B2, 29 July 2003. [Google Scholar]
- Dawoud, M.A. Environmental Impacts of Seawater Desalination: Arabian Gulf Case Study. Int. J. Environ. Sustain. 2012, 1, 22–37. [Google Scholar] [CrossRef]
- Development of an Environmental Impact Assessment and Decision Support…—Sabine Latteman. Available online: https://books.google.com/books?hl=en&lr=&id=2kXLBQAAQBAJ&oi=fnd&pg=PP1&dq=Development+of+an+environmental+impact+assessment+and+decision+support+system+for+seawater+desalination+plants&ots=vYhITysE5M&sig=uHI8Zk7SiNppVoIwWHPFaodyHpU#v=onepage&q=Development%20of%20an%20environmental%20impact%20assessment%20and%20decision%20support%20system%20for%20seawater%20desalination%20plants&f=false (accessed on 29 January 2024).
- Dindi, A.; Quang, D.V.; Abu-Zahra, M.R.M. Simultaneous carbon dioxide capture and utilization using thermal desalination reject brine. Appl. Energy 2015, 154, 298–308. [Google Scholar] [CrossRef]
- Ampelli, C.; Perathoner, S.; Centi, G. CO2 utilization: An enabling element to move to a resource- and energy-efficient chemical and fuel production. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140177. [Google Scholar] [CrossRef]
- Avila, A.M.; Yu, Z.; Fazli, S.; Sawada, J.A.; Kuznicki, S.M. Hydrogen-selective natural mordenite in a membrane reactor for ethane dehydrogenation. Microporous Mesoporous Mater. 2014, 190, 301–308. [Google Scholar] [CrossRef]
- Buonomenna, M.G.; Yave, W.; Golemme, G. Some approaches for high performance polymer based membranes for gas separation: Block copolymers, carbon molecular sieves and mixed matrix membranes. RSC Adv. 2012, 2, 10745–10773. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, H.; Yan, Y. Catalytic combustion of volatile organic compounds over a structured zeolite membrane reactor. Ind. Eng. Chem. Res. 2013, 52, 12819–12826. [Google Scholar] [CrossRef]
- Duyar, M.S.; Farrauto, R.J.; Castaldi, M.J.; Yegulalp, T.M. In Situ CO2 Capture Using CaO/γ-Al 2 O 3 Washcoated Monoliths for Sorption Enhanced Water Gas Shift Reaction. Ind. Eng. Chem. Res. 2014, 53, 1064–1072. [Google Scholar] [CrossRef]
- Carvill, B.T.; Hufton, J.R.; Anand, M.; Sircar, S. Sorption-enhanced reaction process. AIChE J. 1996, 42, 2765–2772. [Google Scholar] [CrossRef]
- Hufton, J.R.; Mayorga, S.; Sircar, S. Sorption-enhanced reaction process for hydrogen production. AIChE J. 1999, 45, 248–256. [Google Scholar] [CrossRef]
- Stevens, R.W.; Shamsi, A.; Carpenter, S.; Siriwardane, R. Sorption-enhanced water gas shift reaction by sodium-promoted calcium oxides. Fuel 2010, 89, 1280–1286. [Google Scholar] [CrossRef]
- Van Selow, E.R.; Cobden, P.D.; Verbraeken, P.A.; Hufton, J.R.; Van Den Brink, R.W. Carbon capture by sorption-enhanced water-gas shift reaction process using hydrotalcite-based material. Ind. Eng. Chem. Res. 2009, 48, 4184–4193. [Google Scholar] [CrossRef]
- Minutillo, M.; Perna, A. A novel approach for treatment of CO2 from fossil fired power plants. Part B: The energy suitability of integrated tri-reforming power plants (ITRPPs) for methanol production. Int. J. Hydrog. Energy 2010, 35, 7012–7020. [Google Scholar] [CrossRef]
- Song, C.; Pan, W. Tri-reforming of methane: A novel concept for catalytic production of industrially useful synthesis gas with desired H2/CO ratios. Catal. Today 2004, 98, 463–484. [Google Scholar] [CrossRef]
- Duyar, M.S.; Wang, S.; Arellano-Treviño, M.A.; Farrauto, R.J. CO2 utilization with a novel dual function material (DFM) for capture and catalytic conversion to synthetic natural gas: An update. J. CO2 Util. 2016, 15, 65–71. [Google Scholar] [CrossRef]
- Lao, D.B.; Galan, B.R.; Linehan, J.C.; Heldebrant, D.J. The steps of activating a prospective CO2 hydrogenation catalyst with combined CO2 capture and reduction. Green. Chem. 2016, 18, 4871–4874. [Google Scholar] [CrossRef]
- Reddy, K.J.; John, S.; Weber, H.; Argyle, M.D.; Bhattacharyya, P.; Taylor, D.T.; Christensen, M.; Foulke, T.; Fahlsing, P. Simultaneous capture and mineralization of coal combustion flue gas carbon dioxide (CO2). Energy Procedia 2011, 4, 1574–1583. [Google Scholar] [CrossRef]
- Al-Mamoori, A.; Krishnamurthy, A.; Rownaghi, A.A.; Rezaei, F. Carbon Capture and Utilization Update. Energy Technol. 2017, 5, 834–849. [Google Scholar] [CrossRef]
CO2 Capture Technologies | Benefits | Drawbacks | Ref. |
---|---|---|---|
Absorption |
|
| [18] |
Membrane separation |
|
| [25] |
Adsorption |
|
| [41] |
Chemical looping |
|
| [73] |
Direct air capture (DAC) |
|
| [72] |
Hybrid processes |
|
| [18] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nwabueze, Q.A.; Leggett, S. Advancements in the Application of CO2 Capture and Utilization Technologies—A Comprehensive Review. Fuels 2024, 5, 508-532. https://doi.org/10.3390/fuels5030028
Nwabueze QA, Leggett S. Advancements in the Application of CO2 Capture and Utilization Technologies—A Comprehensive Review. Fuels. 2024; 5(3):508-532. https://doi.org/10.3390/fuels5030028
Chicago/Turabian StyleNwabueze, Queendarlyn Adaobi, and Smith Leggett. 2024. "Advancements in the Application of CO2 Capture and Utilization Technologies—A Comprehensive Review" Fuels 5, no. 3: 508-532. https://doi.org/10.3390/fuels5030028
APA StyleNwabueze, Q. A., & Leggett, S. (2024). Advancements in the Application of CO2 Capture and Utilization Technologies—A Comprehensive Review. Fuels, 5(3), 508-532. https://doi.org/10.3390/fuels5030028