Catalytic Performance of Hydroxyapatite-Based Supports: Tailored vs. Commercial Formulations for Dry Reforming of Methane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ni-Based Catalyst Preparation
2.2. Catalyst Characterisation
2.3. Catalytic Evaluation
3. Results and Discussion
3.1. Characterisation of the Supports and Fresh Catalysts
3.1.1. Crystal Structure
3.1.2. Molecular Bonding and Composition
3.1.3. Elemental Analysis
3.1.4. Morphology and Elemental Composition
3.1.5. Redox Properties
3.1.6. Specific Surface Area and Pore Volume
3.2. Catalytic Performance
Evaluation of Catalyst Performance and Stability
4. Characterisation of the Spent Catalyst
4.1. XRD Analysis
4.2. TEM-STEM-EDX Analysis
4.3. BET-BJH Analysis
4.4. TGA-MS Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X. Diversification and localization of energy systems for sustainable development and energy security. Energy Policy 2005, 33, 2237–2243. [Google Scholar] [CrossRef]
- Khan, M.A.; Khan, M.Z.; Zaman, K.; Naz, L. Global estimates of energy consumption and greenhouse gas emissions. Renew. Sustain. Energy Rev. 2014, 29, 336–344. [Google Scholar] [CrossRef]
- Höök, M.; Tang, X. Depletion of fossil fuels and anthropogenic climate change-A review. Energy Policy 2013, 52, 797–809. [Google Scholar] [CrossRef]
- Abas, N.; Kalair, A.; Khan, N. Review of fossil fuels and future energy technologies. Futures 2015, 69, 31–49. [Google Scholar] [CrossRef]
- Mikkelsen, M.; Jørgensen, M.; Krebs, F.C. The teraton challenge. A review of fixation and transformation of carbon dioxide, the Royal Society of chemistry. Energy Environ. Sci. 2010, 3, 43–81. [Google Scholar] [CrossRef]
- Kasipandi, S.; Bae, J.W. Recent Advances in Direct Synthesis of Value-Added Aromatic Chemicals from Syngas by Cascade Reactions over Bifunctional Catalysts. Adv. Mater. 2019, 31, 1803390. [Google Scholar] [CrossRef]
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G.; et al. Changes in Atmospheric Constituents and in Radiative Forcing. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Cong, R.G.; Caro, D.; Thomsen, M. Is it beneficial to use biogas in the Danish transport sector?—An environmental-economic analysis. J. Clean. Prod. 2017, 165, 1025–1035. [Google Scholar] [CrossRef]
- Ramachandran, R.; Menont, R.K. An Overview of Industrial Uses of Hydrogen. Int. J. Hydrogen Energy 1998, 23, 593–598. [Google Scholar] [CrossRef]
- Matsumura, Y.; Nakamori, T. Steam reforming of methane over nickel catalysts at low reaction temperature. Appl. Catal. A Gen. 2004, 258, 107–114. [Google Scholar] [CrossRef]
- Grasso, G.; Schaefer, G.; Schuurman, Y.; Mirodatos, C. Methane steam reforming in microchannel reactors: Technical challenges and performances benefits. Top. Catal. 2011, 54, 859–865. [Google Scholar] [CrossRef]
- Enger, B.C.; Lødeng, R.; Holmen, A. A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. Appl. Catal. A Gen. 2008, 346, 1–27. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, J.; Zhang, L. Properties of thermodynamic equilibrium-based methane autothermal reforming to generate hydrogen. Int. J. Hydrogen Energy 2013, 38, 15744–15750. [Google Scholar] [CrossRef]
- Jang, W.J.; Shim, J.O.; Kim, H.M.; Yoo, S.Y.; Roh, H.S. A review on dry reforming of methane in aspect of catalytic properties. Catal. Today 2019, 324, 15–26. [Google Scholar] [CrossRef]
- Serrano-Lotina, A.; Daza, L. Influence of the operating parameters over dry reforming of methane to syngas. Int. J. Hydrogen Energy 2014, 39, 4089–4094. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, L.; Wang, S.; Mao, D.; Hu, C. Low-temperature catalytic CO2 dry reforming of methane on Ni-based catalysts: A review. Fuel Process. Technol. 2018, 169, 199–206. [Google Scholar] [CrossRef]
- Mark, M.F.; Mark, F.; Maier, W.F. Reaction kinetics of the CO2 reforming of methane. Chem. Eng. Technol. 1997, 20, 361–370. [Google Scholar] [CrossRef]
- Aramouni, N.A.K.; Touma, J.G.; Tarboush, B.A.; Zeaiter, J.; Ahmad, M.N. Catalyst design for dry reforming of methane: Analysis review. Renew. Sustain. Energy Rev. 2018, 82, 2570–2585. [Google Scholar] [CrossRef]
- Tsyganok, A.I.; Inaba, M.; Tsunoda, T.; Hamakawa, S.; Suzuki, K.; Hayakawa, T. Dry reforming of methane over supported noble metals: A novel approach to preparing catalysts. Catal. Commun. 2003, 4, 493–498. [Google Scholar] [CrossRef]
- Crisafulli, C.; Scirè, S.; Minicò, S.; Solarino, L. Ni-Ru bimetallic catalysts for the CO2 reforming of methane. Appl. Catal. A Gen. 2002, 225, 1–9. [Google Scholar] [CrossRef]
- Fidalgo, B.; Arenillas, A.; Menéndez, J.A. Mixtures of carbon and Ni/Al2O3 as catalysts for the microwave-assisted CO2 reforming of CH4. Fuel Process. Technol. 2011, 92, 1531–1536. [Google Scholar] [CrossRef]
- Rostrupnielsen, J.R.; Hansen, J.H.B. CO2-Reforming of Methane over Transition Metals. J. Catal. 1993, 144, 38–49. [Google Scholar] [CrossRef]
- Pakhare, D.; Spivey, J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 2014, 43, 7813–7837. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Feng, S.; Tao, W.; Lu, X.; Yao, W.; Li, G.; Zhou, Z. Effects of noble metal-doping on Ni/La2O3-ZrO2 catalysts for dry reforming of coke oven gas. Int. J. Hydrogen Energy 2014, 39, 12604–12612. [Google Scholar] [CrossRef]
- Guczi, L.; Stefler, G.; Geszti, O.; Sajó, I.; Pászti, Z.; Tompos, A.; Schay, Z. Methane dry reforming with CO2: A study on surface carbon species. Appl. Catal. A Gen. 2010, 375, 236–246. [Google Scholar] [CrossRef]
- Seo, H.O. Recent scientific progress on developing supported Ni catalysts for dry (CO2) reforming of methane. Catalysts 2018, 8, 110. [Google Scholar] [CrossRef]
- Provendier, H.; Petit, C.; Ás, C.E.; Libs, S.; Kiennemann, A. Stabilisation of active nickel catalysts in partial oxidation of methane to synthesis gas by iron addition. Appl. Catal. A Gen. 1999, 180, 163–173. [Google Scholar] [CrossRef]
- Wang, J.; Fu, Y.; Kong, W.; Jin, F.; Bai, J.; Zhang, J.; Sun, Y. Design of a carbon-resistant Ni@S-2 reforming catalyst: Controllable Ni nanoparticles sandwiched in a peasecod-like structure. Appl. Catal. B 2021, 282, 119546. [Google Scholar] [CrossRef]
- Li, B.; Yuan, X.; Li, B.; Wang, X. Impact of pore structure on hydroxyapatite supported nickel catalysts (Ni/HAP) for dry reforming of methane. Fuel Process. Technol. 2020, 202, 106359. [Google Scholar] [CrossRef]
- Phan, T.S.; Minh, D.P. New performing hydroxyapatite-based catalysts in dry-reforming of methane. Int. J. Hydrogen Energy 2023, 48, 30770–30790. [Google Scholar] [CrossRef]
- De Vasconcelos, B.R.; Minh, D.P.; Martins, E.; Germeau, A.; Sharrock, P.; Nzihou, A. Highly-efficient hydroxyapatite-supported nickel catalysts for dry reforming of methane. Int. J. Hydrogen Energy 2020, 45, 18502–18518. [Google Scholar] [CrossRef]
- Phan, T.S.; Sane, A.R.; de Vasconcelos, B.R.; Nzihou, A.; Sharrock, P.; Grouset, D.; Minh, D.P. Hydroxyapatite supported bimetallic cobalt and nickel catalysts for syngas production from dry reforming of methane. Appl. Catal. B 2018, 224, 310–321. [Google Scholar] [CrossRef]
- Bowker, M.; Nuhu, A.; Soares, J. High activity supported gold catalysts by incipient wetness impregnation. Catal. Today 2007, 122, 245–247. [Google Scholar] [CrossRef]
- Huang, Y.-J.; Schwarz, J.A. The effect of catalyst preparation on catalytic activity: III. Thecatalytic activity of Ni/Al2O3 catalysts prepared by incipient wetness. Appl. Catal. 1987, 32, 45–57. [Google Scholar] [CrossRef]
- Earl, J.S.; Wood, D.J.; Milne, S.J. Hydrothermal synthesis of hydroxyapatite. J. Phys. Conf. Ser. 2006, 26, 268–271. [Google Scholar] [CrossRef]
- Brown, L.M. Expunging diffraction contrast: EELS and HAADF in STEM. J. Phys. Conf. Ser. 2014, 522, 012012. [Google Scholar] [CrossRef]
- Rehm, I.; Bonfield, W. Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy. J. Mater. Sci. Mater. Med. 1997, 8, 1–4. [Google Scholar]
- Richardson, J.T.; Paripatyadar, S.A. Carbon dioxide reforming of methane with supported rhodium. Appl. Catal. 1990, 61, 293–309. [Google Scholar] [CrossRef]
- Snoeck, J.-W.; Froment, G.F.; Fowles, M. Filamentous Carbon Formation and Gasification: Thermodynamics, Driving Force, Nucleation, and Steady-State Growth. J. Catal. 1997, 169, 240–249. [Google Scholar] [CrossRef]
- Benguerba, Y.; Dehimi, L.; Virginie, M.; Dumas, C.; Ernst, B. Modelling of methane dry reforming over Ni/Al2O3 catalyst in a fixed-bed catalytic reactor, Reaction Kinetics. Mech. Catal. 2015, 114, 109–119. [Google Scholar] [CrossRef]
- Joo, S.; Lim, C.; Kwon, O.; Zhang, L.; Zhou, J.; Wang, J.Q.; Jeong, H.Y.; Sin, Y.W.; Choi, S.; Kim, G. The first observation of Ni nanoparticle exsolution from YSZ and its application for dry reforming of methane. Mater. Rep. Energy 2021, 1, 100021. [Google Scholar] [CrossRef]
- Boukha, Z.; Yeste, M.P.; Cauqui, M.Á.; González-Velasco, J.R. Influence of Ca/P ratio on the catalytic performance of Ni/hydroxyapatite samples in dry reforming of methane. Appl. Catal. A Gen. 2019, 580, 34–45. [Google Scholar] [CrossRef]
- Khajenoori, M.; Rezaei, M.; Meshkami, F. Dry reforming over CeO2-promoted Ni/MgO nano-catalyst: Effect of Ni loading and CH4/CO2 molar ratio. J. Ind. Eng. Chem. 2015, 21, 717–722. [Google Scholar] [CrossRef]
- Hou, Z.; Chen, P.; Fang, H.; Zheng, X.; Yashima, T. Production of synthesis gas via methane reforming with CO2 on noble metals and small amount of noble-(Rh-) promoted Ni catalysts. Int. J. Hydrogen Energy 2006, 31, 555–561. [Google Scholar] [CrossRef]
- Yu, M.; Zhu, Y.; Lu, Y.; Tong, G.; Zhu, K.; Zhou, X. The promoting role of Ag in Ni-CeO2 catalyzed CH4-CO2 dry reforming reaction. Appl. Catal. B Environ. 2015, 165, 43–56. [Google Scholar] [CrossRef]
- San-José-Alonso, D.; Juan-Juan, J.; Illán-Gómez, M.J.; Román-Martínez, M.C. Co and bimetallic Ni-Co catalysts for the dry reforming of methane. Appl. Catal. A Gen. 2009, 371, 54–59. [Google Scholar] [CrossRef]
- Owgi, A.H.K.; Jalil, A.A.; Aziz, M.A.A.; Nabgan, W.; Hassan, N.S.; Hussain, I.; Alhassan, M.; Hatta, A.H.; Hamid, M.Y.S. The preferable Ni quantity to boost the performance of FSA for dry reforming of methane. Fuel 2023, 332, 126124. [Google Scholar] [CrossRef]
- Gould, T.D.; Montemore, M.M.; Lubers, A.M.; Ellis, L.D.; Weimer, A.W.; Falconer, J.L.; Medlin, J.W. Enhanced dry reforming of methane on Ni and Ni-Pt catalysts synthesized by atomic layer deposition. Appl. Catal. A Gen. 2015, 492, 107–116. [Google Scholar] [CrossRef]
- Datsyuk, V.; Kalyva, M.; Papagelis, K.; Parthenios, J.; Tasis, D.; Siokou, A.; Kallitsis, I.; Galiotis, C. Chemical oxidation of multiwalled carbon nanotubes. Carbon 2008, 46, 833–840. [Google Scholar] [CrossRef]
- Düdder, H.; Kähler, K.; Krause, B.; Mette, K.; Kühl, S.; Behrens, M.; Scherer, V.; Muhler, M. The role of carbonaceous deposits in the activity and stability of Ni-based catalysts applied in the dry reforming of methane. Catal. Sci. Technol. 2014, 4, 3317–3328. [Google Scholar] [CrossRef]
- Li, Z.; Mo, L.; Kathiraser, Y.; Kawi, S. Yolk-satellite-shell structured Ni-Yolk@Ni@SiO2 nanocomposite: Superb catalyst toward methane CO2 reforming reaction. ACS Catal. 2014, 4, 1526–1536. [Google Scholar] [CrossRef]
- Tsyganok, A.I.; Tsunoda, T.; Hamakawa, S.; Suzuki, K.; Takehira, K.; Hayakawa, T. Dry Reforming of Methane Over Catalysts Derived from Nickel-Containing Mg-Al Layered Double Hydroxides. 2003. Available online: www.elsevier.com/locate/jcat (accessed on 26 August 2022).
Support/Catalysts | Ca/P Ratio |
---|---|
HAPC | 1.38 |
HAPS | 1.54 |
10% Ni-HAPC | 1.38 |
10% Ni-HAPS | 1.54 |
Catalyst/Support | SBET (m2/g) | Pore Volume (cm3/g) | Pore Size (nm) |
---|---|---|---|
HAPC | 65 | 0.34 | 23 |
HAPS | 72 | 0.27 | 15 |
10% Ni-HAPC | 46 | 0.0025 | 14 |
10% Ni-HAPS | 39 | 0.003 | 24 |
Metal/Support-Promoters | Conditions | XCH4 | XCO2 | Reference |
---|---|---|---|---|
10% Ni/HAPS | T = 800 °C GHSV = 5000–10,000 L/h kg P = 1 atm TOS = 120 h | 97–95% | 85% | This work |
10% Ni/HAPC | T = 800 °C GHSV = 5000–10,000 L/h kg P = 1 atm TOS = 100 h | 82–94% | 98–100% | This work |
10% Ni-7% CeO2/MgO | T = 700 °C GHSV = 12,000 L/h kg P = 1 atm TOS = 5 h | 45% | 89% | [43] |
5% Rh/α-AL2O3 | T = 800 °C GHSV = 60,000 L/h kg P = 1 atm TOS = 4 h | 57.2–56.9% | 64.4–63.8% | [44] |
10% Ni/CeO2 | T = 760 °C GHSV = 13,400 L/h kg P = 1 atm TOS = 100 h | 67.05–82.82% | 80–90% | [45] |
7.7% Ni/γ-Al2O3 | T = 700 °C WHSV = 22,000 h−1 P = 1 atm TOS = 6 h | 60–54% | 66% | [46] |
Spent Catalyst | SBET (m2/g) | Pore Volume (cm3/g) | Pore Size (nm) |
---|---|---|---|
Spent 10% Ni-HAPC | 15 | 0.000215 | 11 |
Spent 10% Ni-HAPS | 4 | 0.000130 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassini, H.; Rego de Vasconcelos, B.; Achouri, I.E. Catalytic Performance of Hydroxyapatite-Based Supports: Tailored vs. Commercial Formulations for Dry Reforming of Methane. Fuels 2024, 5, 607-624. https://doi.org/10.3390/fuels5040033
Hassini H, Rego de Vasconcelos B, Achouri IE. Catalytic Performance of Hydroxyapatite-Based Supports: Tailored vs. Commercial Formulations for Dry Reforming of Methane. Fuels. 2024; 5(4):607-624. https://doi.org/10.3390/fuels5040033
Chicago/Turabian StyleHassini, Hanaa, Bruna Rego de Vasconcelos, and Inès Esma Achouri. 2024. "Catalytic Performance of Hydroxyapatite-Based Supports: Tailored vs. Commercial Formulations for Dry Reforming of Methane" Fuels 5, no. 4: 607-624. https://doi.org/10.3390/fuels5040033
APA StyleHassini, H., Rego de Vasconcelos, B., & Achouri, I. E. (2024). Catalytic Performance of Hydroxyapatite-Based Supports: Tailored vs. Commercial Formulations for Dry Reforming of Methane. Fuels, 5(4), 607-624. https://doi.org/10.3390/fuels5040033