Effect of Methane Gas Hydrate Content of Marine Sediment on Ocean Wave-Induced Oscillatory Excess Pore Water Pressure and Geotechnical Implications
Abstract
:1. Introduction
2. Study Background
2.1. Global Distribution and Energy Potential of Natural Gas Hydrates
2.2. Subsea Energy Infrastructure and Geotechnical Implications
3. Modeling Gas Hydrate Effect on Oscillatory Excess Pore Water Pressure
3.1. Integration of Source Term into Classical Consolidation Equation
3.2. Application to Oscillatory Excess Pore Water Pressure Generation
4. Methodology
4.1. Rock Physics Saturation Model
4.2. Geotechnical Model
4.3. Hydrological Parameters
5. Results and Discussion
5.1. Pore Evolution
5.2. Geotechnical Implications
5.3. Implications for Casing String Design in Drilling Engineering
5.4. Summary
6. Conclusions
- The oscillatory excess pore pressures for all time frames studied in this paper exhibit a damping effect from a maximum value toward a stable value as the depth of gas hydrate-bearing sediment increases.
- The excessively high values of oscillatory excess pore pressure reported in the present paper where the presence of initial methane gas pressure is considered are an imminent precursor of the submarine slope instability and failure reported in the geotechnical literature in areas with marine wave action.
- Assuming that there is no initial methane gas hydrate, pressure leads to the underestimation of excess pore pressure that could lead to improper geotechnical engineering practices.
- The assumption that there is no initial methane gas hydrate pressure leads to negative values of oscillatory excess pore pressure during certain times of wave action, which correspond to the unloading effect associated with onshore geotechnical engineering practices related to excavation.
- The existence of oscillatory excess pore water pressure requires additional secondary well control measures that call for the maximized use of safety factors in drilling in addition to increasing the casing strings required to drill to targets depths, which increases the cost of drilling.
- The amplitude of the oscillatory excess pore water decreases with the depth of the sediment, attaining a stable value.
7. Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
A and B | Parameters defined in Equations (11) and (12) |
B | Parameter |
K | Hydraulic conductivity, ms−1 |
Time, s | |
Greek Letters | |
Biot’s pore pressure coefficient | |
Parameter related to compressibility in the mass balance equation | |
Unit weight of seawater, Pam−1 | |
Bulk modulus of the gas hydrate system, Pa | |
A number equal to 3.14 | |
Porosity | |
Source term in the mass balance equation, Pa·s−1 | |
Parameter defined by Equation (4) | |
Viscosity, Pa·s | |
Empirical constant | |
Skempton’s pore pressure coefficient | |
Wave amplitude, m | |
Biot’s pore pressure coefficient | |
Oscillatory excess pore water pressure, Pa | |
Coefficient of consolidation, m2s−1 | |
Compressibility of water, Pa−1 | |
Coefficient of volume compressibility, Pa−1 | |
Amplitude of pressure on the ocean floor, Pa | |
Wave period, s |
Appendix A. Effect of Hydrate Saturation on Young’s Modulus [77]
Appendix B. Initial Pore Pressure as a Function of Volume Fraction of Dissolved Methane Gas Hydrate [97]
References
- Wagner, W.; Prub, A. Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. J. Phys. Chem. 2002, 31, 387–535. [Google Scholar] [CrossRef]
- Rowe, A., Jr.; Chou, J. Pressure-volume-temperature-concentration relation of aqueous sodium chloride solutions. Chem. Eng. Data 1970, 15, 61–66. [Google Scholar] [CrossRef]
- Osif, T. The Effects of Salt, Gas, Temperature, and Pressure on the Compressibility of Water. SPE Reserv. Eng. 1988, 3, 175–181. [Google Scholar] [CrossRef]
- Blount, C.; Price, L. Solubility of Methane in Water Under Natural Conditions: A Laboratory Study; Department of Geology, Idaho State University; Final Report Published by the DOE; DOE: Washington, DC, USA, 1982.
- Price, L. Aqueous Solubility of Methane at Elevated Pressures and Temperatures. AAPG Bull. 1979, 63, 527–1533. [Google Scholar]
- Sultanove, R.; Skripka, V.; Namiot, A. Solubility of Methane in Water at High Temperatures and Pressures. Gazov. Promyshlennost 1972, 17, 6–7. [Google Scholar]
- Price, L.C.; Blount, C.W.; Gowan, D.M.; Wenger, L.; Bebout, D.G.; Bachman, A.L. Methane Solubility in Brines with Application to the Geopressured Resource. In Proceedings of the 5th Geopressured Geothermal Energy Conference, Baton Rouge, LA, USA, 13–15 October 1981. [Google Scholar]
- MCGee, K.; Susak, N.; Sutton, A.; Haas, J.J. The Solubility of Methane in Sodium Chloride Brines; USGS Open: Reston, VA, USA, 1981.
- Duan, Z.; Moler, N.; Weare, J. An Equation of State for the CH4-CO2-H2O System: I. Pure Systems from 0 to 1000 °C and 0 to 8000 Bar. Geochim. Cosmochim. Acta 1992, 56, 2605–2617. [Google Scholar] [CrossRef]
- Samsy, H.J. Rapid Methods for Estimating Reservoir Compressibilities. J. Pet. Technol. 1964, 16, 447–454. [Google Scholar]
- Yage, R.M.; Fountain, J. Effect of natural gas exsolution on specific storage in a confined aquifer undergoing water level decline. Ground Water 2001, 39, 517–525. [Google Scholar] [CrossRef]
- Liu, G.; He, L.; Fan, Z.; He, Y.; Wu, Z.; Wang, Z. Investigation of gas solubility and its effects on natural gas reserve and production in tight formations. Fuel 2021, 295, 120507. [Google Scholar] [CrossRef]
- Kretschmer, K.; Biastoch, A.; Rupke, L.; Burwicz, E. Modeling the fate of methane hydrates under global warming. Global Biogeochem. Glob. Biogeochem. Cycles 2015, 29, 610–625. [Google Scholar] [CrossRef]
- Marın-Moreno, H.; Giustiniani, M.; Tinivella, U.; Pinero, E. The challenges of quantifying the carbon stored in Arctic marine gas hydrate. Mar. Pet. Geol. 2016, 71, 76–82. [Google Scholar] [CrossRef]
- USDA. Basics of Global Climate Models. 2004. Available online: https://www.climatehubs.usda.gov/hubs/northwest/topic/basics-global-climate-models#:~:text=Climate%20models%20calculate%20the%20physical,to%20represent%20in%20a%20model (accessed on 15 July 2024).
- Hong, W.-L.; Torres, M.E.; Carroll, J.; Cremierew, A.; Panieri, G. Seepage from an arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming. Nat. Commun. 2017, 8, 15745. [Google Scholar] [CrossRef] [PubMed]
- Lohrberg, A.; Schmale, O.; Ostrovsky, I.; Niemann, H.; Held, P.; Deimling, J.S.V. Discovery and quantifcation of a widespread methane ebullition event in a coastal inlet (Baltic Sea) using a novel sonar strategy. Sci. Rep. 2020, 10, 4393. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Germanovich, L.N. Excess pore pressure resulting from methane hydrate dissociation in marine sediments: A theoretical approach. J. Geophys. Res. 2006, 111, B01104. [Google Scholar] [CrossRef]
- Bai, Y.; Bai, Q.; Handbook, S.E.; Publishing, G.P.; York, N. Subsea Engineering Handbook; Gulf Professional Publishing: New York, NY, USA, 2010; p. 919. [Google Scholar]
- Barrette, P. Offshore pipeline protection against seabed gouging by ice: An overview. Cold Reg. Sci. Technol. 2011, 69, 3–20. [Google Scholar] [CrossRef]
- Xu, J.; Dong, J.; Zhang, S.; Sun, H.; Li, G.; Niu, J.; Li, A.; Dong, P. Pore-water pressure response of a silty seabed to random wave action: Importance of low-frequency waves. Coast. Eng. 2022, 178, 104214. [Google Scholar] [CrossRef]
- Jia, Y.; Zhang, L.; Zheng, J.; Liu, X.; Jeng, D.-S.; Shan, H. Effects of wave-induced seabed liquefaction on sediment re-suspension in the Yellow River Delta. Ocean Eng. 2014, 89, 146–156. [Google Scholar] [CrossRef]
- Huang, Y.; Bao, Y.; Zhang, M.; Liu, C. Analysis of the mechanism of seabed liquefaction induced by waves and related seabed protection. Nat. Hazards 2015, 79, 399–1408. [Google Scholar] [CrossRef]
- Español-Espinel, C.; Haigh, S.K.; Madabhushi, G.S.; Abadie, C.N.; Go, J.E.; Morrison, P.R. Evolution of excess pore water pressures around monopiles subjected to moderate seismic loading. Soil Dyn. Earthq. Eng. 2024, 176, 108316. [Google Scholar] [CrossRef]
- Jacobsen, N. Loads on Driven Monopile Foundations due to Pore Pressures. J. Waterw. Port Coast. Ocean Eng. 2023, 149, 04023011. [Google Scholar] [CrossRef]
- He, W.; Takahashi, A. Dynamic response analysis of monopile-supported offshore wind turbine on sandy ground under seismic and environmental loads. Soil Dyn. Earthq. Eng. 2025, 189, 109105. [Google Scholar] [CrossRef]
- Liao, C.; Tong, D.; Jeng, D.-S.; Zhao, H. Numerical study for wave-induced oscillatory pore pressures and liquefaction around impermeable slope breakwater heads. Ocean Eng. 2018, 157, 364–375. [Google Scholar] [CrossRef]
- Nago, H. Liquefaction of Highly Saturated Sand Layer under Oscillating Water Pressure. Mem. Sch. Eng. Okayama Univ. 1981, 16, 91–104. [Google Scholar]
- Zen, K.; Amazak, H.Y. Oscillatory Pore Pressure and Liquefaction in Seabed Induced by Ocean Waves. Soils Found. 1990, 30, 147–161. [Google Scholar] [CrossRef]
- Sui, T.; Yang, M.; Peng, L.; Chen, J.; Zhang, C.; Zheng, J. Wave-induced residual response and liquefaction of a nonhomogeneous layered seabed, Sec. Coast. Ocean Process. 2024, 11, 117. [Google Scholar]
- Yoneda, J.; Jin, Y.; Muraoka, M.; Oshima, M.; Suzuki, K.; Walker, M.; Otsuki, S.; Kumagai, K.; Collett, T.S.; Boswell, R.; et al. Multiple physical properties of gas hydrate-bearing sediments recovered. Mar. Pet. Geol. 2021, 123, 104748. [Google Scholar] [CrossRef]
- Taleb, F.; Garziglia, S.; Sultan, N. Hydromechanical Properties of Gas Hydrate-Bearing Fine Sediments from In Situ Testing. J. Geophys. Res. 2018, 123, 9615–9634. [Google Scholar] [CrossRef]
- USGS. Gas Hydrates—Primer. 2018. Available online: https://www.usgs.gov/centers/whcmsc/science/gas-hydrates-primer#:~:text=Gas%20hydrate%20is%20an%20ice-like%20crystalline%20form%20of,some%20marine%20sediments%20and%20within%20and%20beneath%20permafrost (accessed on 16 June 2018).
- Porgar, S.; Rahmanian, N. 12—Distribution and discovery of oceanic natural gas hydrates. In Advances in Natural Gas: Formation, Processing, and Applications; Elsevier: Amsterdam, The Netherlands, 2024; Volume 3, pp. 281–306. [Google Scholar]
- Gajanayake, S.M.; Gamage, R.P.; Li, X.-S.; Huppert, H. Natural gas hydrates—Insights into a paradigm-shifting energy resource: Paradigm-shifting energy resource. Energy Rev. 2023, 2, 100013. [Google Scholar] [CrossRef]
- Kvenvolden, K.; Rogers, B. Gaia’s breath—global methane exhalations. Mar. Pet. Geol. 2005, 22, 579–590. [Google Scholar] [CrossRef]
- IEA. Methane and Climate Change. 2021. Available online: https://www.iea.org/reports/methane-tracker-2021/methane-and-climate-change (accessed on 16 June 2024).
- Our-World-in-Data. Global Warming Potential of Greenhouse Gases Relative to CO2. 2021. Available online: https://ourworldindata.org/grapher/global-warming-potential-of-greenhouse-gases-over-100-year-timescale-gwp (accessed on 16 June 2024).
- Ruppel, C.D. Methane Hydrates and Contemporary Climate Change. Nat. Educ. Knowl. 2011, 3, 12. [Google Scholar]
- IEA. Offshore Energy Outlook 2018. 2018. Available online: https://www.iea.org/reports/offshore-energy-outlook-2018 (accessed on 16 June 2024).
- Bai, Y.; Bai, Q. Subsea manifolds have been used in the development of oil and gas fields to simplify the subsea system, minimize the use of subsea pipelines and risers, and optimize the fluid flow of production in the system. The manifold is an arrangement of piping and. In Subsea Engineering Handbook; GPP: Pune, India, 2010; pp. 571–632. [Google Scholar]
- IEEE-Spectrum. Inside the Global Race to Tap Potent Offshore Wind Potent Offshore Wind. 2023. Available online: https://spectrum.ieee.org/floating-offshore-wind-turbine (accessed on 16 June 2024).
- Rosano, M. Nova Scotia’s First In-Stream Tidal Turbine Starts Producing Power Turbine Starts Producing Power. 2016. Available online: https://canadiangeographic.ca/articles/nova-scotias-first-in-stream-tidal-turbine-starts-producing-power/ (accessed on 11 June 2024).
- Wang, W.Z.L.; Xie, L.L.J.; Zhang, C. Study of the Shear Strength of Sediments in Main Sedimentation Stages. Mar. Georesour. Geotechnol. 2015, 33, 556–566. [Google Scholar] [CrossRef]
- Moore, D.G.; Keller, G.H. Marine sediments, geotechnical properties Encyclopedia of Earth Sciences Series. Appl. Geol. 2011, 3, 343–350. [Google Scholar]
- Hu, S.; Li, Z.; Wang, H.; Xue, Z.; Tan, P.; Wu, K.T.Y.; Feng, X. Estimating Shear Strength of Marine Soft Clay Sediment: Experimental Research and Hybrid Ensemble Artificial Intelligence Modeling. Water 2016, 16, 1664. [Google Scholar] [CrossRef]
- Do, T.M.; Laue, J.; Mattsson, H.; Jia, Q. Excess pore water pressure generation in fine granular materials under undrained cyclic triaxial loading. Int. J. Geo-Eng. 2023, 14, 8. [Google Scholar] [CrossRef]
- Niu, J.; Xu, J.; Dong, P.; Li, G. Pore water pressure responses in silty sediment bed under random wave action. Sci. Rep. 2019, 9, 11685. [Google Scholar]
- Liu, X.-L.; Cui, H.-N.; Jeng, D.-S.; Zhao, H.-Y. A coupled mathematical model for accumulation of wave-induced pore water pressure and its application. Coast. Eng. 2019, 154, 103577. [Google Scholar] [CrossRef]
- Jeng, D.-S. Wave-Induced Pore Pressure Accumulation in Marine Sediments. In Porous Models for Wave-Seabed Interactions; Springer: Berlin/Heidelberg, Germany, 2012; pp. 251–270. [Google Scholar]
- Yang, Z.; Zhu, Y.; Liu, T.; Sun, Z.; Ling, X.; Yang, J. Pumping effect of wave-induced pore pressure on the development of fluid mud layer. Ocean. Eng. 2019, 169, 106391. [Google Scholar] [CrossRef]
- Qi, W.; You, Q.; Luyang, W.; Qifei, L.; Haiyang, Z.; Guoxing, C. Development characteristics of excess pore water pressure in saturated marine coral sand based on shear strain characteristics: An experimental study. Appl. Ocean. Res. 2023, 137, 103594. [Google Scholar] [CrossRef]
- Jia, B.; Cui, X. Pore pressure dependent gas flow in tight porous media. J. Pet. Sci. Eng. 2021, 205, 108835. [Google Scholar] [CrossRef]
- Zimmerman, R. Coupling in poroelasticity and thermoelasticity. Int. J. Rock Mech. Min. Sci. 2000, 37, 79–87. [Google Scholar] [CrossRef]
- Skempton, A.W. The pore-pressure coefficients A and B. Gkotechnique 1954, 4, 143–147. [Google Scholar] [CrossRef]
- Sui, T.; Yang, M.; Peng, L.; Chen, J.; Zhang, C.; Zheng, J. Wave-induced residual response and liquefaction of a nonhomogeneous layered seabed. Front. Mar. Sci. 2024, 11, 1360641. [Google Scholar] [CrossRef]
- Xu, X.; Xu, G.; Yang, J.; Xu, Z.; Ren, Y. Field observation of the wave-induced pore pressure response in a silty soil seabed. Geo-Mar. Lett. 2021, 41, 13. [Google Scholar] [CrossRef]
- Finn, W.; Siddharthan, R.; Martin, G. Response of seafloor to ocean waves. J. Geotech. Eng. ASCE 1983, 109, 556–572. [Google Scholar] [CrossRef]
- Weber, T.; Wiseman, N.A.; Kock, A. Global ocean methane emissions dominated by shallow coastal waters. Nat. Commun. 2019, 10, 4584. [Google Scholar] [CrossRef]
- Helgerud, M.B.; Dvorkin, J.; Nur, A.; Sakai, A.; Collett, T. Elastic-wave velocity in marine sediments with gas hydrates: Effective medium modeling. Geophys. Res. Lett. 1999, 26, 2021–2024. [Google Scholar] [CrossRef]
- Ecker, C.; Dvorkin, J.; Nur, A.M. Estimating the amount of gas hydrate and free gas from marine seismic data. Geophysics 2000, 65, 565–573. [Google Scholar] [CrossRef]
- Wang, W.; Ba, J.; Carcione, J.M.; Zhang, X.L.L. Wave Properties of Gas-Hydrate Bearing Sediments Based on Poroelasticity. Front. Earth Sci. 2021, 9, 640424. [Google Scholar]
- Chen, C.; Zhang, Y.; Li, X.-S.; Li, G.; Chen, Z.-Y. Experimental Study on the Effective Thermal Conductivity of Methane Hydrate-Bearing Sediments Using a Steady-State Method. Energy Fuels 2024, 38, 5928–5939. [Google Scholar] [CrossRef]
- Rozhko, A.Y. Effective Fluid Bulk Modulus in the Partially Saturated Rock and the Amplitude Dispersion Effects. GDR-Solid Earth 2020, 125, e2019JB018693. [Google Scholar] [CrossRef]
- Cortes, D.D.; Martin, A.I.; Yun, T.S.; Francisca, F.M.; Santamarina, J.C.; Ruppel, C. Thermal conductivity of hydrate-bearing sediments. J. Geophys. Res. 2009, 114, B11103. [Google Scholar] [CrossRef]
- Selvadurai, A.P.S.; Suvorov, A.P. The influence of the pore shape on the bulk modulus and the Biot coeficient of fluid saturated. Sci. Rep. 2020, 10, 18959. [Google Scholar] [CrossRef] [PubMed]
- Bishop, A. The influence of an undrained change in stress on the pore-pressure in porous media of low compressibility. Geotechnique 1973, 23, 435–442. [Google Scholar] [CrossRef]
- Qadrouh, A.; Carcione, J.M.; Salim, A.M.; Harith, Z.Z.T. Attenuation effects on the seismic response of a bottom-simulating reflector. Eng. J. Nat. Gas Sci. 2015, 24, 510–517. [Google Scholar] [CrossRef]
- Krief, M.; Garat, J.; Stellingwerff, J.; Ventre, J. A petrophysical interpretation using the velocities of P and S waves (full waveform sonic). Log Anal. 1990, 31, 355–369. [Google Scholar]
- Guo, Z.; Wang, X.; Jiao, J.; Chen, H. Rock Physics Model and Seismic Dispersion and Attenuation in Gas Hydrate-Bearing Sediments. Front. Earth Sci. 2021, 9, 641606. [Google Scholar] [CrossRef]
- Fern. Discovering the Seafloor of the Bay of Fundy. 2011. Available online: https://fern.acadiau.ca/fern-news-reader/discovering-the-seafloor-of-the-bay-of-fundy.html (accessed on 7 May 2024).
- Zhang, J.; Gao, T. Compressibility of Abnormal Pressure Gas Reservoirs and Its Effect on Reserves. ACS Omega 2021, 6, 26221–26230. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, X.; Zhang, L.; Wang, Z.; Wang, D.; Dai, S. An Analytical Model for the Permeability in Hydrate-Bearing Sediments Considering the Dynamic Evolution of Hydrate Saturation and Pore Morphology. Geophys. Res. Lett. 2021, 48, e2021GL093397. [Google Scholar] [CrossRef]
- Stranne, C.; O’Regan, M.; Jakobsson, M. Modeling fracture propagation and seafloor gas release during seafloor warming-induced hydrate dissociation. Geophys. Res. Lett. 2017, 44, 8510–8519. [Google Scholar] [CrossRef]
- Falode, O.A.; Chukwunagolu, V.S. Homotopy Analysis Solution to Radial Diffusivity Equation of Slightly Compressible Fluid. Appl. Math. 2016, 7, 993–1004. [Google Scholar] [CrossRef]
- Yang, P.; Li, L.; Aubertin, M. Theoretical and Numerical Analyses of Earth Pressure Coefficient along the Centerline of Vertical Openings with Granular Fills. Appl. Sci. 2018, 8, 1721. [Google Scholar] [CrossRef]
- Dong, L.; Liao, H.; Li, Y.; Meng, Q.; Hu, G.; Wang, J.; Wu, N. Analysis of the Mechanical Properties of the Reconstituted Hydrate-Bearing Clayey-Silt Samples from the South China Sea. J. Mar. Sci. Eng. 2022, 10, 831. [Google Scholar] [CrossRef]
- Greaves, G.N.; Greer, A.L.; Lakes, R.S.; Rouxel, T. Poisson’s ratio and modern materials. Nat. Mater. 2011, 10, 823–837. [Google Scholar] [CrossRef] [PubMed]
- Li, M.Z.; Hannah, C.G.; Perrie, W.A.; Tang, C.C.; Prescott, R.H.; Greenberg, D.A. Modelling seabed shear stress, sediment mobility. Can. J. Earth Sci. 2015, 52, 757–775. [Google Scholar] [CrossRef]
- Amos, C.L.; Asprey, K.W. An Interpretation of Oceanographic and Sediment Data from the Upper Bay of Fundy; Bedford Institute of Oceanogrphy: Halifax, NS, Canada, 1981. [Google Scholar]
- Santamarina, J.C.; Klein, K.A.; Fam, M.A. Soils and Waves; John Wiley: London, UK, 2001. [Google Scholar]
- Kwon, T.-H.; Cho, G.-C. Gas hydrate dissociation in sediments: Pressure-temperature. Geochem. Geophys. Geosyst. 2008, 9, Q03019. [Google Scholar] [CrossRef]
- Park, S.-S. Prediction of excess pore pressure due to dissociation of gas hydrate within sandy soils. Int. J. Phys. Sci. 2011, 6, 971–974. [Google Scholar]
- Sultan, N. Excess Pore Pressure and Slope Failures Resulting From Gas-Hydrates Dissociation and Dissolution. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 30 April–3 May 2007. [Google Scholar]
- Shakeriana, M.; Afrougha, A.; Vashaee, S.; Maricaa, F.; Zhao, Y.; Zhaob, J.; Song, Y.; Balcom, B.J. Direct measurement of pore gas pressure and water/gas phase transitions during methane hydrate dissociation. Mar. Pet. Geol. 2020, 116, 104296. [Google Scholar] [CrossRef]
- Hansbo, S. Chapter 2—Experience of Consolidation Process from Test Areas with and without Vertical Drains. In Ground Improvement Case Histories: Embankments with Special Reference to Consolidation and Other Physical Methods; Elsevier: Amsterdam, The Netherlands, 2015; pp. 33–82. [Google Scholar]
- Zhang, J.; Zhao, C.; Xiong, Z. Meso-level simulation of gas hydrate dissociation. Theor. Appl. Mech. Lett. 2014, 4, 062002. [Google Scholar] [CrossRef]
- Fan, S.; Guo, K.; Wang, Y.; Lang, X.; Li, Q. Rapid dissociation and on-site saturation evaluation of methane hydrate sediment samples for natural gas hydrate exploitation. Petroleum 2021, 7, 469–476. [Google Scholar] [CrossRef]
- Wang, L.; Sun, X.; Shen, S.; Wu, P.; Liu, T.; Liu, W.; Zhao, J.; Li, Y. Undrained triaxial tests on water-saturated methane hydrate–bearing clayey-silty sediments of the South China Sea. Can. Geotech. J. 2020, 58, 3. [Google Scholar] [CrossRef]
- Robert, D.; Thusyanthan, N.; Jegandan, S. An overview of submarine slope stability and runout assessment for deepwater pipelines. In Proceedings of the Offshore Site Investigation and Geotechnics Conference, Offshore, UK, 12–14 September 2012. [Google Scholar]
- Wang, Z.; Zheng, D.; Gu, Z.; Guo, X.; Nian, T. A Methodology to Evaluate the Real-Time Stability of Submarine Slopes under Rapid Sedimentation. J. Mar. Sci. Eng. 2024, 12, 823. [Google Scholar] [CrossRef]
- Hack, R.; Alkema, D.; Kruse, G.A.; Leenders, N.; Luzi, L. Influence of earthquakes on the stability of slopes. Eng. Geol. 2007, 83, 4–15. [Google Scholar] [CrossRef]
- Hussein, A.A.A.; Zhao, L.; Al-Masgari, A.A.-S.A.; Handoyo, H. Shear strength characteristics of marine sediments: The influences of lithofacies and sedimentological environment. Mar. Geophys. Res. 2024, 45, 14. [Google Scholar] [CrossRef]
- Stark, N.; Parasie, N.; Peuchen, J. Deepwater soil investigation using a free fall penetrometer. Can. Geotech. J. 2022, 59, 2196–2201. [Google Scholar] [CrossRef]
- Nixon, M.F.; Grozic, J.L. Submarine slope failure due to gas hydrate dissociation: A preliminary quantification. Can. Geotech. J. 2007, 14, 314–325. [Google Scholar] [CrossRef]
- Ghadrdan, M.; Shaghaghi, T.; Tolooiyan, A. Generation of negative excess pore-water pressure (NEPWP) due to the excavation of saturated soils under undrained conditions and the dissipation that follows over time may result in different short- and long-term slope instability. Geotech. Lett. 2020, 10, 20–29. [Google Scholar] [CrossRef]
- Li, C.; Zhan, L.; Lu, H. Mechanisms for Overpressure Development in Marine Sediments. Mar. Sci. Eng. 2022, 10, 490. [Google Scholar] [CrossRef]
- Karstens, J.; Haflidason, H.; Becker, L.W.M.; Berndt, C.; Rüpke, L.; Planke, S.; Liebetrau, V.; Schmidt, M.; Mienert, J. Glacigenic sedimentation pulses triggered post-glacial gas hydrate dissociation. Nat. Commun. 2018, 9, 635. [Google Scholar] [CrossRef]
- Khaled, S.; Soliman, A.A.; Mohamed, A.; Attia, S.G.A.M. New Models for Predicting Pore Pressure and Fracture Pressure while Drilling in Mixed Lithologies Using Artificial Neural Networks. ACS Omega 2024, 7, 31691–31699. [Google Scholar] [CrossRef]
- Bröker, K.; Ma, X. Estimating the Least Principal Stress in a Granitic Rock Mass: Systematic Mini-Frac Tests and Elaborated Pressure Transient Analysis. Rock Mech. Rock Eng. 2022, 55, 1931–1954. [Google Scholar] [CrossRef]
- Feng, Y.; Jones, J.F.; Gray, K.E. A Review on Fracture-Initiation and -Propagation Pressures for Lost Circulation and Wellbore Strengthening. SPE Drill. Complet. 2016, 31, 134–144. [Google Scholar] [CrossRef]
- Strout, J.; Tjelta, T. Excess Pore Pressure Measurement and Monitoring for Offshore Instability Problems. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 30 April–3 May 2007. [Google Scholar]
- Rai, P.; Schunesson, H.; Lindqvist, P.-A.; Kumar, U. An Overview on Measurement-While-Drilling Technique and its Scope in Excavation Industry. J. Inst. Eng. 2015, 96, 57–66. [Google Scholar] [CrossRef]
- Sultan, M.A.; Ahmed, M.; Ali, M.; Babar, G.Z. Understanding the Well Control Procedures for optimizing the Well Control System During Drilling. Am. J. Comput. Eng. 2022, 5, 24–38. [Google Scholar] [CrossRef]
- Zhao, X.; Qu, Z.; Xu, X.; Yu, X.; Fan, H.; Song, X. Calculation Model of Rock Fracture Pressure with Multifields in the Process of Fracturing. Numer. Probl. Eng. 2018, 2018, 1–9. [Google Scholar]
- Hubbert, M.K.; Willis, D.G. Hydraulic Fracturing. In Proceedings of the Petroleum Branch Fall Meeting Los Angeles of Petroleum Engineers of AIME, Los Angeles, CA, USA, 14–17 October 1957. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miadonye, A.; Amadu, M. Effect of Methane Gas Hydrate Content of Marine Sediment on Ocean Wave-Induced Oscillatory Excess Pore Water Pressure and Geotechnical Implications. Fuels 2025, 6, 4. https://doi.org/10.3390/fuels6010004
Miadonye A, Amadu M. Effect of Methane Gas Hydrate Content of Marine Sediment on Ocean Wave-Induced Oscillatory Excess Pore Water Pressure and Geotechnical Implications. Fuels. 2025; 6(1):4. https://doi.org/10.3390/fuels6010004
Chicago/Turabian StyleMiadonye, Adango, and Mumuni Amadu. 2025. "Effect of Methane Gas Hydrate Content of Marine Sediment on Ocean Wave-Induced Oscillatory Excess Pore Water Pressure and Geotechnical Implications" Fuels 6, no. 1: 4. https://doi.org/10.3390/fuels6010004
APA StyleMiadonye, A., & Amadu, M. (2025). Effect of Methane Gas Hydrate Content of Marine Sediment on Ocean Wave-Induced Oscillatory Excess Pore Water Pressure and Geotechnical Implications. Fuels, 6(1), 4. https://doi.org/10.3390/fuels6010004