Boosted Bio-Oil Production and Sustainable Energy Resource Recovery Through Optimizing Oxidative Pyrolysis of Banana Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock Preparation
2.2. Experimental Setup and Procedure
3. Results and Discussion
3.1. Raw Material Characterization
3.2. Thermogravimetric Analysis
3.3. Effect of Temperature on Product Yield
3.4. Effect of O/B Ratio on Product Yield
3.5. Product Characterization
3.5.1. Bio-Oil
3.5.2. Bio-Char
3.5.3. Pyro-Gas
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ayala-Ruíz, N.; Malagón-Romero, D.H.; Milquez-Sanabria, H.A. Exergoeconomic Evaluation of a Banana Waste Pyrolysis Plant for Biofuel Production. J. Clean. Prod. 2022, 359, 132108. [Google Scholar] [CrossRef]
- García, R.; Pizarro, C.; Lavín, A.G.; Bueno, J.L. Characterization of Spanish Biomass Wastes for Energy Use. Bioresour. Technol. 2012, 103, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Cortes, W. Tratamientos Aplicables a Materiales Lignocelulósicos para la Obtención de Etanol y Productos Químicos. Rev. Tecnol. 2014, 13, 39–44. [Google Scholar]
- Leong, W.; Lim, J.; Lam, M.; Uemura, Y. Third Generation Biofuels: A Nutritional Perspective in Enhancing Microbial Lipid Production. Renew. Sustain. Energy Rev. 2018, 91, 950–961. [Google Scholar] [CrossRef]
- Abdullah, B.; Anuar, S.; Muhammad, S.; Shokravi, Z.; Ismail, S. Fourth Generation Biofuel: A Review on Risks and Mitigation Strategies. Renew. Sustain. Energy Rev. 2019, 107, 37–50. [Google Scholar] [CrossRef]
- Morseletto, P. Targets for a Circular Economy. Resour. Conserv. Recycl. 2020, 153, 104553. [Google Scholar] [CrossRef]
- Carriquiry, M.A.; Du, X.; Timilsina, G.R. Second Generation Biofuels: Economics and Policies. Energy Policy 2011, 39, 4222–4234. [Google Scholar] [CrossRef]
- Taib, R.M.; Abdullah, N.; Aziz, N.S.M. Bio-oil Derived from Banana Pseudo-stem via Fast Pyrolysis Process. Biomass Bioenergy 2021, 148, 106034. [Google Scholar] [CrossRef]
- Poliacof, C. Banana Production Quantity. Available online: https://knoema.com/atlas/topics/Agriculture/Crops-Production-Quantity-tonnes/Bananas-production (accessed on 5 November 2024).
- Ahmad, T.; Danish, M. Prospects of Banana Waste Utilization in Wastewater Treatment: A Review. J. Environ. Manag. 2018, 206, 330–348. [Google Scholar] [CrossRef]
- Wilaipon, P. Effects of Briquetting Pressure on Banana-Peel Briquette and the Banana Waste in Northern Thailand. Am. J. Appl. Sci. 2009, 6, 167–171. [Google Scholar] [CrossRef]
- Sellin, N.; Oliveira, B.G.; Marangoni, C.; Souza, O.; Oliveira, A.P.N.; Oliveira, T.M.N. Use of Banana Culture Waste to Produce Briquetes. Chem. Eng. Trans. 2013, 32, 349–354. [Google Scholar]
- Tock, J.Y.; Lai, C.L.; Lee, K.T.; Tan, K.T.; Bhatia, S. Banana Biomass as Potential Renewable Energy Resource: A Malaysian Case Study. Renew. Sustain. Energy Rev. 2010, 14, 798–805. [Google Scholar] [CrossRef]
- Gonçalves Filho, L.C.; Fischer, G.A.A.; Sellin, N.; Marangoni, C.; Souza, O. Hydrolysis of Banana Tree Pseudostem and Second-generation Ethanol Production by Saccharomyces cerevisiae. J. Environ. Sci. Eng. 2013, 2, 65–69. [Google Scholar]
- Bello, R.H.; Linzmeyer, P.; Franco, C.M.B.; Souza, O.; Sellin, N.; Medeiros, S.H.W.; Marangoni, C. Pervaporation of Ethanol Produced from Banana Waste. Waste Manag. 2014, 34, 1501–1509. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Cen, K.; Zhuang, X.; Gan, Z.; Zhou, J.; Zhang, Y.; Zhang, H. Insight into Biomass Pyrolysis Mechanism Based on Cellulose, Hemicellulose, and Lignin: Evolution of Volatiles and Kinetics, Elucidation of Reaction Pathways, and Characterization of Gas, Biochar and Bio-oil. Combust. Flame 2022, 242, 112142. [Google Scholar] [CrossRef]
- Heidari, A.; Stahl, R.; Younesi, H.; Rashidi, A.; Troeger, N.; Ghoreyshi, A.A. Effect of process conditions on product yield and composition of fast pyrolysis of Eucalyptus grandis in fluidized bed reactor. J. Ind. Eng. Chem. 2014, 20, 2594–2602. [Google Scholar] [CrossRef]
- Fernandes, E.R.K. Thermochemical Characterization of Banana Leaves as a Potential Energy Source. Energy Convers. Manag. 2013, 75, 603–608. [Google Scholar] [CrossRef]
- Ghosh, S.; Das, S.; Chowdhury, R. Effect of Pre-pyrolysis Biotreatment of Banana Pseudo-stem (BPS) Using Synergistic Microbial Consortium: Role in Deoxygenation and Enhancement of Yield of Pyro-oil. Energy Convers. Manag. 2019, 195, 114–124. [Google Scholar] [CrossRef]
- Ozbay, N.; Yargic, A.S.; Yarbay Sahin, R.Z.; Yaman, E. Valorization of Banana Peel Waste via In-situ Catalytic Pyrolysis Using Al-Modified SBA-15. Renew. Energy 2019, 140, 633–646. [Google Scholar] [CrossRef]
- Hussain, M.; Zhao, Z.; Ren, J.; Rasool, T.; Raza, S. Thermo-kinetics and Gaseous Product Analysis of Banana Peel Pyrolysis for Its Bioenergy Potential. Biomass Bioenergy 2019, 122, 193–201. [Google Scholar]
- Abdullah, N.; Sulaiman, F.; Mohd, R. Pyrolytic Oil of Banana (Musa spp.) Pseudo-stem via Fast Process. Am. Inst. Phys. 2015, 1657, 100005. [Google Scholar]
- Mesa-Perez, J.M.; Rocha, J.D.; Barbosa-Cortez, L.A.; Penedo-Medinad, M.; Cascarosa, E. Fast Oxidative Pyrolysis of Sugar Cane Straw in a Fluidized Bed Reactor. Appl. Therm. Eng. 2013, 56, 167–175. [Google Scholar] [CrossRef]
- Kumar, S.A.P.; Nagarajan, R.; Midhun Prasad, K.; Anand, B.; Murugavelh, S. Thermogravimetric Study and Kinetics of Banana Peel Pyrolysis: A Comparison of ‘Model-free’ Methods. Biofuels 2019, 13, 129–138. [Google Scholar] [CrossRef]
- Kokkinos, N.C.; Emmanouilidou, E. Waste-to-Energy: Applications and Perspectives on Sustainable Aviation Fuel Production. In Renewable Fuels for Sustainable Mobility; Shukla, P.C., Belgiorno, G., Blasio, G.D., Agarwal, A.K., Eds.; Energy, Environment, and Sustainability; Springer: Singapore, 2023; pp. 265–286. [Google Scholar]
- Kokkinos, N.C.; Emmanouilidou, E.; Sharma, S.K. Waste-to-Biofuel Production for the Transportation Sector. In Intelligent Transportation System and Advanced Technology; Upadhyay, R.K., Sharma, S.K., Kumar, V., Eds.; Energy, Environment, and Sustainability; Springer: Singapore, 2024; pp. 99–122. [Google Scholar]
- Kokkinos, N.; Theochari, G.; Emmanouilidou, E.; Angelova, D.; Toteva, V.; Lazaridou, A.; Mitkidou, S. Biodiesel Production from High Free Fatty Acid Byproduct of Bioethanol Production Process. IOP Conf. Ser. Earth Environ. Sci. 2022, 1123, 012009. [Google Scholar] [CrossRef]
- Karmee, S.K.; Kumari, G.; Soni, B. Pilot Scale Oxidative Fast Pyrolysis of Sawdust in a Fluidized Bed Reactor: A Biorefinery Approach. Bioresour. Technol. 2020, 318, 124071. [Google Scholar] [CrossRef] [PubMed]
- Mariyam, S.; Alherbawi, M.; McKay, G.; Al-Ansari, T. A Predictive Model for Biomass Waste Pyrolysis Yield: Exploring the Correlation of Proximate Analysis and Product Composition. Energy Conver. Manag. X 2025, 25, 100831. [Google Scholar] [CrossRef]
- Sellin, N.; Ricardo, D.; Marangoni, C.; Souza, O. Oxidative Fast Pyrolysis of Banana Leaves in a Fluidized Bed Reactor. Renew. Energy 2016, 96, 56–64. [Google Scholar] [CrossRef]
- Wang, Q.; Song, H.; Pan, S.; Dong, N.; Wang, X.; Sun, S. Initial Pyrolysis Mechanism and Product Formation of Cellulose: An Experimental and Density Functional Theory (DFT) Study. Sci. Rep. 2020, 10, 3626. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of Hemicellulose, Cellulose, and Lignin Pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Das, D.; Kim, S.C.; Cho, B.-K.; Lee, J.-K.; Kalia, V.C. Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products. Renew. Sustain. Energy. Rev. 2021, 150, 111491. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Kalia, V.C.; Lee, J.-K. Integration of biogas derived from dark fermentation and anaerobic digestion of biowaste to enhance methanol production by methanotrophs. Bioresour. Technol. 2023, 369, 128427. [Google Scholar] [CrossRef] [PubMed]
- Chandekar, B.; Rohit, M.V.; Patel, S.K.S. Efficient dark-fermentation biohydrogen production by Shigella flexneri SPD1 from biowaste-derived sugars through green solvents approach. Bioresour. Technol. 2024, 410, 131276. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Gupta, R.K.; Rohit, M.V.; Lee, J.-K. Recent developments in hydrogen production, storage, and transportation: Challenges, opportunities, and perspectives. Fire 2024, 7, 233. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Chai, M.; Li, C.; Yellezuome, N.; Liu, R. Pyrolysis Kinetics and Thermodynamic Parameters of Bamboo Residues and Its Three Main Components Using Thermogravimetric Analysis. Biomass Bioenergy 2023, 170, 106705. [Google Scholar] [CrossRef]
- Carrier, M.; Fournet, R.; Sirjean, B.; Amsbury, S.; Alfonso, Y.B.; Pontalier, P.Y.; Bridgwater, A. Fast Pyrolysis of Hemicelluloses into Short-Chain Acids: An Investigation on Concerted Mechanisms. Energy Fuels 2020, 34, 14232–14248. [Google Scholar] [CrossRef]
- López, H.D.; Ayala, N.; Malagón-Romero, D. Evaluation of the Production of Bio-Oil Obtained Through Pyrolysis of Banana Peel Waste. Chem. Eng. Trans. 2021, 89, 637–642. [Google Scholar]
- Sahoo, K.; Kumar, A.; Prasad, J. Comparative Study on Valuable Products: Bio-oil, Biochar, Non-condensable Gases from Pyrolysis of Agricultural Residues. J. Mater. Cycles Waste Manag. 2021, 23, 186–204. [Google Scholar] [CrossRef]
- Tripathi, M.; Sahu, J.N.; Ganesan, P. Effect of Process Parameters on Production of Biochar from Biomass Waste through Pyrolysis: A Review. Renew. Sustain. Energy Rev. 2016, 55, 467–481. [Google Scholar] [CrossRef]
- Huang, Y.; Li, B.; Liu, D.; Xie, X.; Zhang, H.; Sun, H.; Hu, X.; Zhang, S. Fundamental Advances in Biomass Autothermal/Oxidative Pyrolysis: A Review. ACS Sustain. Chem. Eng. 2020, 8, 11888–11905. [Google Scholar] [CrossRef]
- Li, B.; Song, M.; Xie, X.; Wei, J.; Xu, D.; Ding, K.; Huang, Y.; Zhang, S.; Hu, X.; Zhang, S.; et al. Oxidative Fast Pyrolysis of Biomass in a Quartz Tube Fluidized Bed Reactor: Effect of Oxygen Equivalence Ratio. Energy 2023, 270, 126987. [Google Scholar] [CrossRef]
- Jiang, S.; Hu, X.; Wu, L.; Zhang, L.; Wang, S.; Li, T.; Xia, D.; Li, C.Z. Oxidative Pyrolysis of Mallee Wood Biomass, Cellulose and Lignin. Fuel 2018, 217, 382–388. [Google Scholar] [CrossRef]
- Peterson, C.A.; Lindstrom, J.K.; Polin, J.P.; Cady, S.D.; Brown, R.C. Oxidation of Phenolic Compounds During Autothermal Pyrolysis of Lignocellulose. J. Anal. Appl. Pyrolysis 2020, 149, 104853. [Google Scholar] [CrossRef]
- Gumisiriza, R.; Hawumba, J.F.; Okure, M.; Hensel, O. Biomass Waste-to-Energy Valorization Technologies: A Review Case for Banana Processing in Uganda. Biotechnol. Biofuels 2017, 10, 11. [Google Scholar] [CrossRef]
- Setyawan, H.Y.; Sunyoto, N.M.S.; Sugiarto, Y.; Dewanti, B.S.D.; Widayanti, V.T.; Hakim, L.; Kurniawan, S.; Nugroho, G.A.; Ulandari, D.; Choirun, A.; et al. Characterisation of Biochar from Various Carbon Sources. BIO Web Conf. 2024, 90, 06003. [Google Scholar]
- Zama, E.F.; Zhu, Y.-G.; Reid, B.J.; Sun, G.-X. The role of Biochar Properties in Influencing the Sorption and Desorption of Pb(II), Cd(II) and As(III) in Aqueous Solution. J. Clean. Prod. 2017, 148, 127–136. [Google Scholar] [CrossRef]
- Karunanithi, R.; Sik Ok, Y.; Dharmarajan, R.; Ahmad, M.; Seshadri, B.; Bolan, N.; Naidu, R. Sorption, Kinetics and Thermodynamics of Phosphate Sorption onto Soybean Stover Derived Biochar. Environ. Technol. Innov. 2017, 8, 113–125. [Google Scholar] [CrossRef]
- Abdullah, N.; Taib, R.M.; Aziz, N.S.M.; Omar, M.R.; Disa, N.M. Banana Pseudo-Stem Biochar Derived from Slow and Fast Pyrolysis Process. Heliyon 2023, 9, e12940. [Google Scholar] [CrossRef]
- Puri, L.; Hu, Y.; Naterer, G. Critical Review of the Role of Ash Content and Composition in Biomass Pyrolysis. Front. Fuels 2024, 2, 1378361. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokolowska, Z.; Boguta, P. Biochar Physicochemical Properties: Pyrolysis Temperature and Feedstock Kind Effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
Component | Value | Component | Value |
---|---|---|---|
Elemental analysis | Proximate analysis | ||
Carbon (%) | 35.2 | Moisture (%) | 10.1 |
Hydrogen (%) | 4.3 | Ash (%) | 14.8 |
Nitrogen (%) | 1.4 | Volatile (%) | 70.6 |
Sulfur (%) | 0.04 | Fixed carbon (%) | 4.5 |
Oxygen | 59.0 | ||
Lignocellulosic analysis | |||
Cellulose (%) | 33.1 | ||
Hemicellulose (%) | 12.9 | ||
Lignin (%) | 31.8 | ||
Extractives (%) | 8.8 | ||
Calorific value (MJ/kg) | 14.2 |
Properties | Unit | Values |
---|---|---|
Water content | wt% | 2.3 |
Ash content | wt% | 0.24 |
Total solid | wt% | 6.40 |
Heating value | MJ/kg | 24.88 |
Density (@40 °C) | kg/m3 | 1280 |
Viscosity (@40 °C) | cP | 30.3 |
Flash point | °C | 87 |
Acidity | pH | 4.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, R.K.; Soni, B.; Patel, U.; Joshi, A.K.; Patel, S.K.S. Boosted Bio-Oil Production and Sustainable Energy Resource Recovery Through Optimizing Oxidative Pyrolysis of Banana Waste. Fuels 2025, 6, 3. https://doi.org/10.3390/fuels6010003
Singh RK, Soni B, Patel U, Joshi AK, Patel SKS. Boosted Bio-Oil Production and Sustainable Energy Resource Recovery Through Optimizing Oxidative Pyrolysis of Banana Waste. Fuels. 2025; 6(1):3. https://doi.org/10.3390/fuels6010003
Chicago/Turabian StyleSingh, Rohit K., Bhavin Soni, Urvish Patel, Asim K. Joshi, and Sanjay K. S. Patel. 2025. "Boosted Bio-Oil Production and Sustainable Energy Resource Recovery Through Optimizing Oxidative Pyrolysis of Banana Waste" Fuels 6, no. 1: 3. https://doi.org/10.3390/fuels6010003
APA StyleSingh, R. K., Soni, B., Patel, U., Joshi, A. K., & Patel, S. K. S. (2025). Boosted Bio-Oil Production and Sustainable Energy Resource Recovery Through Optimizing Oxidative Pyrolysis of Banana Waste. Fuels, 6(1), 3. https://doi.org/10.3390/fuels6010003